Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal ...Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.展开更多
On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A co...On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A computation example indicates that compared to traditional two-dimensional computation methods, the body-fitted simulation has an advantange of better coincidence with the real and can be adopted in simulating flow fields in tidal estuaries.展开更多
Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficien...Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper. Having been well verified with the field data and experimental data, the proposed distribution of Reynolds stress is also compared with numerical model results, and a good agreement is obtained, showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration, upward when the tidal flow is of deceleration. Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress, turbulent generation, transmission, and so on. The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit, but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.展开更多
Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-...Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.展开更多
Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on th...Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on the time-continuous records was performed to examine the characteristics and variations of tidal currents and mean flow over the observation period at these stations. Tidal currents accounted for ~75% of the total kinetic energy, with the absolute dominance of M2 constituent. Visible vertical variations of tidal flow were found on all sites, featured by the decrease of amplitude, increase of rotation rate as well as a decreasing trend of the phase for M2 component with depth. A notable exception was in the central NYS, where the maximum tidal currents occurred in the upper or middle layers (~20–40 m) instead of near the surface (<10 m). The observed mean flow was relatively weak, smaller than 15 cm/s. Velocity on the northern end of Yellow Sea Trough (YST) was characterized by low magnitude and an obvious layered structure vertically. In the Bohai Strait (BS) and the northern slope area, the currents weakened and the flow direction presented a major trend to deflect counterclockwise with depth in most observations. Summertime cyclonic circulation around the Yellow Sea Cold Water Mass (YSCWM), its intensification on the frontal zone and the Yellow Sea Warm Current (YSWC) for the winter season were all evident by our direct current measurements. However, the details of water exchange through the BS appeared partly diff erent from the traditionally-accepted pattern. The vertical diff erences of tidal and mean flow were larger in summer than that in winter, implying the influence of thermal structure to the local currents. Aff ected by the water stratification, mean flow usually reached its maximum near the thermocline in spring and summer, while showing a nearly uniform vertical distribution during winter.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an i...A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an ice keel in the Arctic Ocean.During the interaction process,the internal surge was generated at first,and then the wave gradually steepened due to non-linearity during its propagation away from the ice keel.The internal surge eventually disintegrated into multi-modal and rank-ordered ISW packets with the largest having an amplitude of O(10)m.Sensitivity experiments demonstrated that the ISWs’amplitudes and energy were proportional to the varying ice keel depths and barotropic tidal fl ow amplitudes,but were insensitive to the changing ice keel widths.Typical ISWs can enhance the turbulent dissipation rate of O(10^(-6))W/kg along their propagation path.Further,heat entrainment induced by the wave-ice interaction can reach O(10)MJ/m per tidal cycle.This study reveals a particular ISW generation mechanism and process in the polar ice environment,which could be important in impacting the energy transfer and heat balance in the Arctic Ocean.展开更多
Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In t...Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.展开更多
In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in...In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magni- tude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the eddy viscosity near the bottom than the structure in the upper water layer.展开更多
An analytic model is developed to investigate the barotropic tidally driven residual exchange flow in shallow estuaries. Ebb dominated flow in deep channel and flood dominated flow on the shoals produced by the model ...An analytic model is developed to investigate the barotropic tidally driven residual exchange flow in shallow estuaries. Ebb dominated flow in deep channel and flood dominated flow on the shoals produced by the model are consistent with some observations in tidal rivers and shallow estuaries . Analysis shows that this type of exchange flow is caused by the combined effect of nonlinearity and the lateral variation of the depth. The inward flux is mainly due to the surface elevation of the wave . A seaward residual pressure gradient has to be maintained to drive the water outward for mass balance. Since the surface elevation in an estuary has only small lateral variation , the depth integrated pressure force is mainly dependent on the depth whose value in the channel is larger than that on the shoals. As a result, theretum flow in the channel is larger than that on the shoals. An ebb-flood flow spstem is thus generated.展开更多
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41076008)the Science and Technology Project of Chongqing Education Committee (Grant No. KJ110409 and No. KJ111501)+1 种基金the National Engineering Research Center for Inland Waterway Regulation Program (Grant No. SLK2012A02)the National Key Technology R&D Program (Grant No. 2012BAB05B03)
文摘Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.
文摘On the basis of the physical mechanism, a body-fitted coordinate system is developed. By using this system the boundaries in simulation and in real are fitted well, and simulation with great accuracy is achieved. A computation example indicates that compared to traditional two-dimensional computation methods, the body-fitted simulation has an advantange of better coincidence with the real and can be adopted in simulating flow fields in tidal estuaries.
基金supported by the National Natural Science Foundation of China(Grant No.50339010)the Public Fund Project of Ministry of Water Resource of China(Grant No.200701026)
文摘Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper. Having been well verified with the field data and experimental data, the proposed distribution of Reynolds stress is also compared with numerical model results, and a good agreement is obtained, showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration, upward when the tidal flow is of deceleration. Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress, turbulent generation, transmission, and so on. The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit, but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
基金supported by the National Key Technologies R&D Program of China for the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08-02)the Program for the Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. B08408)
文摘Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.
基金Supported by the State Key Program of National Natural Science of China(Nos.41430963,U1706215)the National Science Foundation for Young Scientists of China(No.41506012)
文摘Several bottom-mounted Acoustic Doppler Current Profiler (ADCP) moorings were deployed in the northern Yellow Sea (NYS) during the four seasons of 2006–2007 and also the summertime of 2009. A synthesis analysis on the time-continuous records was performed to examine the characteristics and variations of tidal currents and mean flow over the observation period at these stations. Tidal currents accounted for ~75% of the total kinetic energy, with the absolute dominance of M2 constituent. Visible vertical variations of tidal flow were found on all sites, featured by the decrease of amplitude, increase of rotation rate as well as a decreasing trend of the phase for M2 component with depth. A notable exception was in the central NYS, where the maximum tidal currents occurred in the upper or middle layers (~20–40 m) instead of near the surface (<10 m). The observed mean flow was relatively weak, smaller than 15 cm/s. Velocity on the northern end of Yellow Sea Trough (YST) was characterized by low magnitude and an obvious layered structure vertically. In the Bohai Strait (BS) and the northern slope area, the currents weakened and the flow direction presented a major trend to deflect counterclockwise with depth in most observations. Summertime cyclonic circulation around the Yellow Sea Cold Water Mass (YSCWM), its intensification on the frontal zone and the Yellow Sea Warm Current (YSWC) for the winter season were all evident by our direct current measurements. However, the details of water exchange through the BS appeared partly diff erent from the traditionally-accepted pattern. The vertical diff erences of tidal and mean flow were larger in summer than that in winter, implying the influence of thermal structure to the local currents. Aff ected by the water stratification, mean flow usually reached its maximum near the thermocline in spring and summer, while showing a nearly uniform vertical distribution during winter.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金Supported by the National Key Research and Development Program of China and National Natural Science Foundation of China(Nos.2019YFE0105700,2016YFC1402705,2017YFA0604102,92058202,91858103,42176244,2016YFC1401404)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA22050202,XDB42000000)+1 种基金the CAS Key Research Program of Frontier Sciences and Key Deployment Project of Centre for Ocean Mega-Research of Science(Nos.QYZDB-SSW-DQC024,COMS2020Q07)the project jointly funded by the CAS and CSIRO(No.133244KYSB20190031)。
文摘A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an ice keel in the Arctic Ocean.During the interaction process,the internal surge was generated at first,and then the wave gradually steepened due to non-linearity during its propagation away from the ice keel.The internal surge eventually disintegrated into multi-modal and rank-ordered ISW packets with the largest having an amplitude of O(10)m.Sensitivity experiments demonstrated that the ISWs’amplitudes and energy were proportional to the varying ice keel depths and barotropic tidal fl ow amplitudes,but were insensitive to the changing ice keel widths.Typical ISWs can enhance the turbulent dissipation rate of O(10^(-6))W/kg along their propagation path.Further,heat entrainment induced by the wave-ice interaction can reach O(10)MJ/m per tidal cycle.This study reveals a particular ISW generation mechanism and process in the polar ice environment,which could be important in impacting the energy transfer and heat balance in the Arctic Ocean.
基金The National Key R&D Project of China under contract No.2017YFC1404201the USA North Pacific Research Board Project under contract No.1229the USA Bureau of Ocean Energy Management Awards under contract Nos M12PG00024(ACES)and M12PG00018(Arctic EIS)
文摘Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.
基金supported by the National Natural Science Foundation of China (No. 41676003)NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606402)
文摘In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magni- tude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the eddy viscosity near the bottom than the structure in the upper water layer.
文摘An analytic model is developed to investigate the barotropic tidally driven residual exchange flow in shallow estuaries. Ebb dominated flow in deep channel and flood dominated flow on the shoals produced by the model are consistent with some observations in tidal rivers and shallow estuaries . Analysis shows that this type of exchange flow is caused by the combined effect of nonlinearity and the lateral variation of the depth. The inward flux is mainly due to the surface elevation of the wave . A seaward residual pressure gradient has to be maintained to drive the water outward for mass balance. Since the surface elevation in an estuary has only small lateral variation , the depth integrated pressure force is mainly dependent on the depth whose value in the channel is larger than that on the shoals. As a result, theretum flow in the channel is larger than that on the shoals. An ebb-flood flow spstem is thus generated.
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.