In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The res...In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.展开更多
Potential applications of Nano-scale science and technology are discussed in mineralogy, ore deposits, cosmochemistry and environmental sciences. Adsorption of nanometersized gold was experimentally studied on a varie...Potential applications of Nano-scale science and technology are discussed in mineralogy, ore deposits, cosmochemistry and environmental sciences. Adsorption of nanometersized gold was experimentally studied on a variety of minerals and rocks.展开更多
The strained Si grown on the relaxed SiGe-on-insulator C-MOSFET's is a promising device for the future system LSI devices with the design rule of sub-micron. The achievement of the discrete Ge mole fraction in the...The strained Si grown on the relaxed SiGe-on-insulator C-MOSFET's is a promising device for the future system LSI devices with the design rule of sub-micron. The achievement of the discrete Ge mole fraction in the SiGe layer is a key engineering in low-temperature SiGe epitaxial growth using HVCVD. The pre-flow of GeH4 gas enhanced the Ge mole fraction and SiGe layer thickness. In addition, the Ge mole fraction and SiGe layer thickness increases with the gas ratio of GeH4/SiH4 + GeH4, process temperature, and gas flow time. However, the haze was produced if the Ge mole fraction is above 22wt%. The discrete-like Ge mole fraction with 22 wt% in 10 nm SiGe layer was obtained by the pre-flow of GeH4 for 10 s, the mixture gas ratio of GeH4/SiH4 + GeH4 of 67%, and the gas flow time for 150 s at the process temperature of 550 C.展开更多
Schrodinger-Langevin equation has been constructed for the ion-transport for K-ion channel. The stability of the solutions of this equation has been discussed under various physical situations. This will shed new ligh...Schrodinger-Langevin equation has been constructed for the ion-transport for K-ion channel. The stability of the solutions of this equation has been discussed under various physical situations. This will shed new light on the ion transport at nano-scale as well as the possibility of ion trapping and quantum information processing.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more techn...In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced.With a review of technology and mechanisms of evaluating the adhesion failure of coatings.three techniques,nano-im-pact,nano-scratch and nano-indentation techniques,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano scratch and nano-indentation techniques are very useful tools particularly in charactering the performance of thin coatings under nano-abra sive wear conditions.However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service.Instead,results of the new dynamic testing technique。展开更多
Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The t...Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The tribological properties of adding Cu and MoS2 nanoparticles to the pure grease were measured on MM-200 tester, compared with the single additive and pure grease. The results show the size of Cu nanoparticles is about 50 nm. The surface with lubricant added nanopowder as additive possesses a remarkable decrease in wear volume. The friction coefficient and wear volume of lubricant mixed with 5% copper and 30% disulfide molybdenum nanoparticles are 0.09 and 1.80mm3, respectively. This mixed additive can not only increase the ability of supporting heavy load but repair the microscopic channels and cracks on the wear surface. Under higher load and long period of time, this lubricant has the characteristics of self-repairing, occluding resistance and ability of enduring higher temperature.展开更多
The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is...The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.展开更多
A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room t...A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.展开更多
Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and effic...Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.展开更多
The impact of Ca and Si nano-scale structures on parameters and density of states of single-crystalline CaF2(111) was studied. It was shown that at low concentration of ions of Ar+ (D ≤ 5 × 1015 cm-2) one witnes...The impact of Ca and Si nano-scale structures on parameters and density of states of single-crystalline CaF2(111) was studied. It was shown that at low concentration of ions of Ar+ (D ≤ 5 × 1015 cm-2) one witnesses formation of nanoscale phases on CaF2 surface. It was revealed that these phases lead to narrowing of the forbidden band Еg between the phases by 4 - 4.5 eV. At higher concentrations (D ≈ 6 × 1016 cm-2) the surface completely is covered by Ca atoms. It was shown that deposition of θ = 10 thick Si single layer on CaF2 surface manifests island picture. The concentration of Ca and Si nano-scale phases on the surface of CaF2 and the band gap of the phases were investigated as a function of (hν) of passing light. Nano-scale phases and nano-scale films of Ca were obtained by using the technique of bombardment with ions of Ar+ of CaF2 surface. Formation of nano-scale phases were accompanied by change in the composition and structure of CaF2 zones located between the phases. These changes led to narrowing of the forbidden band of CaF2 down to 7.5 - 8 eV. The concentration of Ca and Si nano-scale phases on the surface of CaF2 and the band gap of the phases were investigated as a function of (hν) of passing light.展开更多
We establish that ordinary energy, Casimir energy and dark energy are not only interlinked but are basically the same thing separated merely by scale and topology. Casimir energy is essentially a nano scale spacetime ...We establish that ordinary energy, Casimir energy and dark energy are not only interlinked but are basically the same thing separated merely by scale and topology. Casimir energy is essentially a nano scale spacetime phenomenon produced by the boundary condition of the two Casimir plates constituting the Casimir experimental set up for measuring the Casimir force. By contrast dark energy is the result of the cosmic boundary condition, i.e. the boundary of the universe. This one sided M?bius-like boundary located at vast cosmic distance and was comparable only to the Hubble radius scales of the universe. All the Casimir energy spreads out until the majority of it reaches the vicinity of the edge of the cosmos. According to a famous theorem due to the Ukrainian-Israeli scientist I. Dvoretzky, almost 96% of the total energy will be concentrated at the boundary of the universe, too far away to be measured directly. The rest of the accumulated Casimir energy density is consequently the nearly 4% to 4.5%, the existence of which is confirmed by various sophisticated cosmic measurements and observations. When all is said and done, the work is essentially yet another confirmation of Witten’s T-duality and mirror symmetry bringing nano scale and Hubble scale together in an unexpected magical yet mathematically rigorous way.展开更多
Objective: To determine the ultrastructural findings on Rectal Mucosa (RM) of patients with HIV/AIDS and anorectal pathologies (ARP), at micrometric and nanometric scales. Materials and methods: 5 patients were evalua...Objective: To determine the ultrastructural findings on Rectal Mucosa (RM) of patients with HIV/AIDS and anorectal pathologies (ARP), at micrometric and nanometric scales. Materials and methods: 5 patients were evaluated, 18 - 55 years old, with ARP (HIV co-infection with HPV, n = 4, and HIV-negative patient with HPV infection) (control n = 1), who were referred to the Coloproctology Unit of the HUC, and subjected to rectoscopy and biopsy. RM samples were identified, placed in a sterile plastic bottle with 1 mL of 2% glutaraldehyde and immediately transported for routine processing of fine cut (60 - 90 nm) to be evaluated via Transmission Electron Microscopy (TEM). They were fixed with Karnovsky solution with Millonig phosphate buffer (pH 7.4 and 320 mOsm) and post-fixed with OsO4 under the same conditions of pH and osmolarity. Results: Ultrastructural findings, at 10−6 scale: 1) Intestinal mucosa: vacuoles of mucus of different sizes that seem to be fused. 2) Smooth muscle cells: loss of definition of contractile myofilaments mass. 3) Unmyelinated axons and terminals of Schwann cells (SC): Edema and loss of their plasma membranes in some areas of association with axon terminals as well as abundant collagen fibers associated with SC. Ultrastructural findings, at 10−9 scale: 1) Smooth muscle cells: folded wrapper cores and edema of mitochondria and rough endoplasmic reticulum cisterns (RER). 2) Myelinated axon terminals: Loss of synaptic vesicles. 3) Fibroblasts: One observes mitochondria and cisterns of RER with alterations. All these alterations can generate intestinal and anorectal dysfunction in these patients. Conclusions: The HIV causes changes in rectal and muscular mucosa despite HAART treatment with undetectable viral load.展开更多
Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the...Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the addition of small amounts of nano-sized Al2O3 particles to the base fluid increases heat transfer coefficients considerably, while the result for the silica nanofluids contradicts with the alumina nanofluids and this leads to some interesting results. In the case of alumina nanofluids, an average increase of 16% in convective heat transfer coefficient is observed with an average penalty of 28% in pressure drop. Moreover, flow resistance increases significantly compared to the base fluid even at very low concentrations of nanofluids. Finally, measured heat transfer coefficients are compared with predicted ones from the correlation of Shah under the same conditions.展开更多
Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrate...Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.展开更多
Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspa...Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.展开更多
The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morph...The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morphology differences between PC and AAS on micrometer to nano meter scale.The experimental results indicated that the AAS paste had soil like fracture texture and it was composed of mainly C-S-H gel but lacks of crystals,and it had a very strong tendency to shrink and crack.AAS paste is much denser and more homogeneous than PC,and on the nano scale C-S-H nano particle in the AAS paste is much smaller and packs much denser than PC paste.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51335005,51321092)
文摘In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.
文摘Potential applications of Nano-scale science and technology are discussed in mineralogy, ore deposits, cosmochemistry and environmental sciences. Adsorption of nanometersized gold was experimentally studied on a variety of minerals and rocks.
文摘The strained Si grown on the relaxed SiGe-on-insulator C-MOSFET's is a promising device for the future system LSI devices with the design rule of sub-micron. The achievement of the discrete Ge mole fraction in the SiGe layer is a key engineering in low-temperature SiGe epitaxial growth using HVCVD. The pre-flow of GeH4 gas enhanced the Ge mole fraction and SiGe layer thickness. In addition, the Ge mole fraction and SiGe layer thickness increases with the gas ratio of GeH4/SiH4 + GeH4, process temperature, and gas flow time. However, the haze was produced if the Ge mole fraction is above 22wt%. The discrete-like Ge mole fraction with 22 wt% in 10 nm SiGe layer was obtained by the pre-flow of GeH4 for 10 s, the mixture gas ratio of GeH4/SiH4 + GeH4 of 67%, and the gas flow time for 150 s at the process temperature of 550 C.
文摘Schrodinger-Langevin equation has been constructed for the ion-transport for K-ion channel. The stability of the solutions of this equation has been discussed under various physical situations. This will shed new light on the ion transport at nano-scale as well as the possibility of ion trapping and quantum information processing.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
文摘In response to current development of materials in nano-science.characterisation of thin coating adhesion ona nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced.With a review of technology and mechanisms of evaluating the adhesion failure of coatings.three techniques,nano-im-pact,nano-scratch and nano-indentation techniques,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano scratch and nano-indentation techniques are very useful tools particularly in charactering the performance of thin coatings under nano-abra sive wear conditions.However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service.Instead,results of the new dynamic testing technique。
文摘Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The tribological properties of adding Cu and MoS2 nanoparticles to the pure grease were measured on MM-200 tester, compared with the single additive and pure grease. The results show the size of Cu nanoparticles is about 50 nm. The surface with lubricant added nanopowder as additive possesses a remarkable decrease in wear volume. The friction coefficient and wear volume of lubricant mixed with 5% copper and 30% disulfide molybdenum nanoparticles are 0.09 and 1.80mm3, respectively. This mixed additive can not only increase the ability of supporting heavy load but repair the microscopic channels and cracks on the wear surface. Under higher load and long period of time, this lubricant has the characteristics of self-repairing, occluding resistance and ability of enduring higher temperature.
基金Funded by Natural Science Foundation of Guangxi Province ofChina (No.0339037) ,the Support Programfor Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institution,the Science Foundationfor Qualified Personnel of Jiangsu University(04JDG027) ,andthe Innovative Science Foundation of Jiangsu Uni-versity
文摘The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.
基金supported by the National Research Foundation of South Africa(NRF),the French Centre National pour la Recherche Scientifique,iThemba-LABS,the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology,the Third World Academy of Science(TWAS),Organization of Women in Science for the Developing World(OWSDW),the Abdus Salam ICTP via the Nanosciences African Network(NANOAFNET),and the Higher Education Commission(HEC)of Pakistan
文摘A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305322,51405364,51475348)
文摘Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.
文摘The impact of Ca and Si nano-scale structures on parameters and density of states of single-crystalline CaF2(111) was studied. It was shown that at low concentration of ions of Ar+ (D ≤ 5 × 1015 cm-2) one witnesses formation of nanoscale phases on CaF2 surface. It was revealed that these phases lead to narrowing of the forbidden band Еg between the phases by 4 - 4.5 eV. At higher concentrations (D ≈ 6 × 1016 cm-2) the surface completely is covered by Ca atoms. It was shown that deposition of θ = 10 thick Si single layer on CaF2 surface manifests island picture. The concentration of Ca and Si nano-scale phases on the surface of CaF2 and the band gap of the phases were investigated as a function of (hν) of passing light. Nano-scale phases and nano-scale films of Ca were obtained by using the technique of bombardment with ions of Ar+ of CaF2 surface. Formation of nano-scale phases were accompanied by change in the composition and structure of CaF2 zones located between the phases. These changes led to narrowing of the forbidden band of CaF2 down to 7.5 - 8 eV. The concentration of Ca and Si nano-scale phases on the surface of CaF2 and the band gap of the phases were investigated as a function of (hν) of passing light.
文摘We establish that ordinary energy, Casimir energy and dark energy are not only interlinked but are basically the same thing separated merely by scale and topology. Casimir energy is essentially a nano scale spacetime phenomenon produced by the boundary condition of the two Casimir plates constituting the Casimir experimental set up for measuring the Casimir force. By contrast dark energy is the result of the cosmic boundary condition, i.e. the boundary of the universe. This one sided M?bius-like boundary located at vast cosmic distance and was comparable only to the Hubble radius scales of the universe. All the Casimir energy spreads out until the majority of it reaches the vicinity of the edge of the cosmos. According to a famous theorem due to the Ukrainian-Israeli scientist I. Dvoretzky, almost 96% of the total energy will be concentrated at the boundary of the universe, too far away to be measured directly. The rest of the accumulated Casimir energy density is consequently the nearly 4% to 4.5%, the existence of which is confirmed by various sophisticated cosmic measurements and observations. When all is said and done, the work is essentially yet another confirmation of Witten’s T-duality and mirror symmetry bringing nano scale and Hubble scale together in an unexpected magical yet mathematically rigorous way.
文摘Objective: To determine the ultrastructural findings on Rectal Mucosa (RM) of patients with HIV/AIDS and anorectal pathologies (ARP), at micrometric and nanometric scales. Materials and methods: 5 patients were evaluated, 18 - 55 years old, with ARP (HIV co-infection with HPV, n = 4, and HIV-negative patient with HPV infection) (control n = 1), who were referred to the Coloproctology Unit of the HUC, and subjected to rectoscopy and biopsy. RM samples were identified, placed in a sterile plastic bottle with 1 mL of 2% glutaraldehyde and immediately transported for routine processing of fine cut (60 - 90 nm) to be evaluated via Transmission Electron Microscopy (TEM). They were fixed with Karnovsky solution with Millonig phosphate buffer (pH 7.4 and 320 mOsm) and post-fixed with OsO4 under the same conditions of pH and osmolarity. Results: Ultrastructural findings, at 10−6 scale: 1) Intestinal mucosa: vacuoles of mucus of different sizes that seem to be fused. 2) Smooth muscle cells: loss of definition of contractile myofilaments mass. 3) Unmyelinated axons and terminals of Schwann cells (SC): Edema and loss of their plasma membranes in some areas of association with axon terminals as well as abundant collagen fibers associated with SC. Ultrastructural findings, at 10−9 scale: 1) Smooth muscle cells: folded wrapper cores and edema of mitochondria and rough endoplasmic reticulum cisterns (RER). 2) Myelinated axon terminals: Loss of synaptic vesicles. 3) Fibroblasts: One observes mitochondria and cisterns of RER with alterations. All these alterations can generate intestinal and anorectal dysfunction in these patients. Conclusions: The HIV causes changes in rectal and muscular mucosa despite HAART treatment with undetectable viral load.
文摘Experimental investigations were carried out to determine the Al2O3/water and SiO2/water nanofluids flowing through a circular tube. convective heat transfer performance and pressure drop of Measurements show that the addition of small amounts of nano-sized Al2O3 particles to the base fluid increases heat transfer coefficients considerably, while the result for the silica nanofluids contradicts with the alumina nanofluids and this leads to some interesting results. In the case of alumina nanofluids, an average increase of 16% in convective heat transfer coefficient is observed with an average penalty of 28% in pressure drop. Moreover, flow resistance increases significantly compared to the base fluid even at very low concentrations of nanofluids. Finally, measured heat transfer coefficients are compared with predicted ones from the correlation of Shah under the same conditions.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123022)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10804084)
文摘Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.
文摘Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.
基金Funded by the Open Foundation of National Key Laboratory of Green Building Materials(CBM-08-KF103)
文摘The features of alkali activated slag(AAS) and portland cement (PC) were observed on multi-scale,the crack and fracture sections were observed with naked eyes,and SEM and AFM were used to study the structure morphology differences between PC and AAS on micrometer to nano meter scale.The experimental results indicated that the AAS paste had soil like fracture texture and it was composed of mainly C-S-H gel but lacks of crystals,and it had a very strong tendency to shrink and crack.AAS paste is much denser and more homogeneous than PC,and on the nano scale C-S-H nano particle in the AAS paste is much smaller and packs much denser than PC paste.