Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume ...Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.展开更多
[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and ratio...[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and rational application of phos- phorus fertilizer and reduction of environmental pollution. [Methods] A field trial and simulated rainfall experiment were carried out. In the field experiment, five phospho- rus levels (0, 75, 150, 300 and 600 kg P2OJhm2) were set, the yield of sugarcane stems and leaves were measured, and their phosphorus content was determined to obtain aboveground P accumulation and P surplus in soil. After sugarcane harvest- ing, calcium magnesium phosphate and potassium dihydrogen phosphate were ap- plied to soil with different levels of phosphorus to conduct the simulated rainfall ex- periment based on monthly rainfall from May to September in Guangxi during 2000-2015. The leachate was collected to analyze the concentration and total amount of phosphorus to obtain the regression equations between available phos- phorus content in soil and the increase of phosphorus concentration in leachate. [Results] Sugarcane yield increased significantly when phosphorus application rate was 150 kg P:~OJhm2. When phosphorus application rate exceeded this value, the yield of sugarcane stems and aboveground part was also significantly higher than the treatment without phosphorus application, but the increase of yield was similar to the treatment with phosphorus application rate of 150 kg P2OJhm2. According to the relationship equation between phosphorus application rate and soil Olsen-P con- tent as well as the relationship equations between the increment of P concentration in leachate and soil Olsen-P content in the treatments with calcium magnesium phosphate and KH2PO4, the increment of P concentration in leachate was 0.02-0.04 mg/L when phosphorus application rate was 75 kg P2OJhm2; the increment of P concentration in leachate was 0.07-0.10 mg/L as phosphorus application rate was 600 kg P2OJhm2. [Conclusions] The reasonable application rate of phosphorus fer- tilizer for sugarcane is 150 kg P2Or/hm2. However, long-term continuous application of phosphorus fertilizer can promote the enhancement of available phosphorus con- tent in soil and increase the risk of phosphorus loss from sugarcane fields.展开更多
[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoret...[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.展开更多
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly aff...The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.展开更多
Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen or phosphorus limited batch culture system in laboratory. Growth rates and cellular Chl a were measured as functions of nitrate and phosphate concen...Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen or phosphorus limited batch culture system in laboratory. Growth rates and cellular Chl a were measured as functions of nitrate and phosphate concentrations. Growth rates were hyperbolic with both nitrate and phosphate concentration and fit the Monod equation. The minimum cell quota of nitrogen and phosphorus and then the optimum N:P ratio of S. trochoidea were estimated in this study. Measurement of phosphate concentration in Jiaozhou Bay suggest that phosphorus is the limiting factor of S. trochoidea growth.展开更多
The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial r...The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial records of reactive phosphorus in the black shale of the Gyabula Formation and oceanic red beds of the Chuangde Formation, Southern Tibet. Results indicate that the principal reactive phosphorus species is the authigenic and carbonate-associated phosphorus (CAP) in the Gyabula Formation and iron oxides-associated phosphorus (FeP) in the Chuangde Formation which accounts for more than half of their own total phosphorus content. While the authigenic and carbonate-associated phosphorus (CAP) is almost equal in the two Formations; the iron oxidesassociated phosphorus is about 1.6 times higher in the Chuangde Formation than that in the Gyabula Formation resulting in a higher content of the total phosphorus in the Chuangde Formation. According to the observations on the marine phosphorus cyde in Modern Ocean, it is found that preferential burial and regeneration of reactive phosphorus corresponds to highly oxic and reducing conditions, respectively, leading to the different distribution of phosphorus in these two distinct type of marine sediments. It is the redox-sensitive behavior of phosphorus cycle to the different redox conditions in the ocean and the controlling effects of phosphorus to the marine production that stimulate the local sedimentary transition from the Cretaceous black shale to the oceanic red beds.展开更多
Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a...Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a sponge-like red phosphorus@graphene(rP@rGO)negative electrode and a Ni2P positive electrode were prepared using a simple one-step method.Both electrodes showed excellent performances(294 F g^−1 and 1526.6 F g^−1 for rP@rGO and Ni2P,respectively),which seem to be the highest among all rP@rGO-and Ni2P-based electrodes reported so far.The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes.Compared to other asymmetric devices,the device,which attained a high operating window of up to 1.6 V,showed high energy and power density values of 41.66 and 1200 W kg−1,respectively.It also has an excellent cyclic stability up to 88%after various consecutive charge/discharge tests.Additionally,the device could power commercial light emitting diodes and fans for 30 s.So,the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications.展开更多
The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the ...The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.展开更多
The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective tec...The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective technology to modify red phosphorus.Functionalized lignin-based compounds can provide a great potential in improving the preservation and processing of red phosphorus.Here,we prepared melamine modified lignin/aluminum phosphate coated red phosphorus(LMAP@RP)and used it as the flame retardant of acrylonitrile-butadiene-styrene(ABS)resin.With 25wt%loading LMAP@RP,the ABS samples show excellent flame inhibiting capacity and reached UL-94 V-0 rating.Cone calorimetry test results show that the peak heat release rate,total heat release and total smoke release of ABS/25LMAP@RP are reduced strikingly by 64.6%,49.3%,and 30.1%,respectively.The char residue is 15.36wt%and the char layer is continuous and dense.The outstanding flame retardant and smoke-suppressant performances of LMAP@RP show its application prospect for ABS.展开更多
A field experiment with an early rice-late rice rotation was carried out on a paddy soil derived from red soil in the southern part of Zhejiang Province to elucidate the effect of excess P application on some importan...A field experiment with an early rice-late rice rotation was carried out on a paddy soil derived from red soil in the southern part of Zhejiang Province to elucidate the effect of excess P application on some important characteristics of soil properies and its relation to nutrient status and grain yields of rice crops.The experimental results indicated that adequate fertilizer P (15 kg P hm-2) could increase the content of soil available P at the tillering stage of early rice, the contents of N, P and K in the shoots of early rice at primary growth stages, and the grain yield of early rice by increasing valid ears per hectare and weight per thousand grains, which was mainly related to the higher contents of reduced, non-reduced and total sugar in the shoots at the heading stage. And early rice supplied with excessive P could not yield more than that applied with adequate P, due to the reduction in the valid grain percentage and weight per thousand grains.In addition, onestime excess P supply at a rate as high as 90 kg P hm-2 could not improve the soil P fertility in case the soil available P content was lower than the initial (3.74 mg kg-1 soil) after an early rice-late rice rotation, and made a decline in the grain yield increased by per kilogram fertilizer P. Thus, one-time excess P supply should not be adopted for soils with a large P fixation capacity like the paddy soils derived from red soils.展开更多
The activation of soil-fixed phosphorus is a long-term concern in soil science. In order to enhance the activation effect to soil-fixed phosphorus in red soil, different modified zeolite, through physical, chemical me...The activation of soil-fixed phosphorus is a long-term concern in soil science. In order to enhance the activation effect to soil-fixed phosphorus in red soil, different modified zeolite, through physical, chemical method and the associated both physics and chemistry, was used in this paper. The results showed as following: 1) the activated ability to soil-fixed phosphorus in red soil for modified zeolite was higher than the common one signally. Order of the ability for all kinds of modification zeolite in absolute activation amount and activation rate was: Modified in high temperature ammonium saturated zeolite > Ammonium saturated zeolite > Modified in high temperature zeolite > Common zeolite. 2) The increasing rate of modified phosphorus in high temperature ammonium saturated zeolite and ammonium saturated zeolite had a decline trend with time postponed while that for modified phosphorus in high temperature zeolite and routine zeolite was rising gradually with time postponed. For ammonium saturated zeolite, the increasing rate of phosphorus in low available phosphorus content red soil was significantly faster than that in red soil with the higher content of available phosphorus. 3) The activation rate for the same modified zeolite showed difference in different phosphorus level soil. The order is: SP<sub>high</sub> > SP<sub>medium</sub> > SP<sub>low</sub>.展开更多
The practical applications of high-capacity alloy-type anode materials in sodium-ion batteries(SIBs)are challenged by their vast volume effects and resulting unstable electrode-electrolyte interphases during discharge...The practical applications of high-capacity alloy-type anode materials in sodium-ion batteries(SIBs)are challenged by their vast volume effects and resulting unstable electrode-electrolyte interphases during discharge-charge cycling.Taking red phosphorus(P)/carbon anode material as an example,we report an on-site conversion reaction to intentionally eliminate the volume effect-dominated surface P and yield an ionically conducting layer of Na3PS4solid-state electrolyte on the composite.Such a surface reconstruction can significantly suppress the electrode swelling and simultaneously enable the activation energy of interfacial Na+transfer as low as 36.7 k J mol^(-1),resulting in excellent electrode stability and ultrafast reaction kinetics.Consequently,excellent cycling performance(510 mA h g^(-1)at 5 A g^(-1)after 1000 cycles with a tiny capacity fading rate of 0.016%per cycle)and outstanding rate capability(484 mA h g^(-1)at 10 A g^(-1)are achieved in half cells.When coupled with Na_(3)V_(2)(PO4)3cathode,the full cells exhibit 100%capacity retention over 200 cycles at 5C with an average Coulombic efficiency of 99.93%and a high energy density of 125.5 W h kg^(-1)at a power density of 8215.6 W kg^(-1)(charge or discharge within~49 s).Remarkably,the full cell can steadily operate at a high areal capacity of 1.9 mA h cm^(-2),the highest level among red P-based full SIBs ever reported.展开更多
Secondary batteries are widely used in energy storage equipment.To obtain high-performance batteries,the development and utilization of electrode materials with cheap price and ideal theoretical gravimetric and volume...Secondary batteries are widely used in energy storage equipment.To obtain high-performance batteries,the development and utilization of electrode materials with cheap price and ideal theoretical gravimetric and volumetric specific capacities have become particularly important.Naturally abundant and low-cost red phosphorus(RP)is recognized as an anode material with great promise because it has a theoretical capacity of 2596 mA h g^(-1) in lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs).However,owing to the inferior discharging,the capacity of pure RP has a fast decay.Nanoconfinement of RP nanoparticles within porous carbon framework is one of the efficient methods to overcome these problems.In this review,we introduce the recent progress of RP confinement into carbon matrix as an energy storage anode material in LIBs,SIBs and potassium-ion batteries(PIBs).The synthetic strategies,lithiation/sodia tion/potassiation mechanism,and the electrochemical performances of RP/carbon composites(RP/C)with kinds of designed structures and P-C and P-O-C bond by kinds of methods are included.Finally,the challenges and perspectives of RP faced in the application development as anodes for LIBs/SIBs/PIBs are covered.This review will strengthen the understanding of composites of RP nanoparticles in porous carbon materials and aid researchers to carry out future work rationally.展开更多
The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and ...The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and P transformation while its high concentration has inhibitory effects, and the inhibition is strengthened with increasing concentration of La. La has strongly inhibitory effect on soil phenol decomposition and the inhibition is strengthened with increasing concentration of La. When the incubation time is prolonged, the inhibitory effect of La on soil nitrification and phenol decomposition tends to decrease.展开更多
Proper mineral nutrition of red clover especially on the acid soils is a prerequisite for the realization of maximum potential for seed yield. The field experiment with four cultivars of red clover were established on...Proper mineral nutrition of red clover especially on the acid soils is a prerequisite for the realization of maximum potential for seed yield. The field experiment with four cultivars of red clover were established on soil having a pH (in H2O) of 4.8, in order to in conditions of dense planting (20 cm inter row) analyzes the effect of foliar application of phosphorus and potassium (PK) on yield and yield components (number of stems/m2, number of inflorescences/m2, number of inflorescences/stem, number of flowers/inflorescence, number of seeds/inflorescence and one thousand grain weight). Regardless of foliar treatment with PK, varieties differed in the number of inflorescences/m2, number of flowers/inflorescence, number of seeds/inflorescence and seed yield. Foliar application of PK in the phase of intensive growth of red clover had a positive impact on number of stem/m2, number of inflorescences/m2 and seed yield in all varieties, as well as on the number of flowers/inflorescence, number of seeds/inflorescence in cultivar Viola.展开更多
The risk of soil phosphorus leaching increases in basin regions in light of large-scale use of phosphorus fertilizers because of agricultural modernization. In this study, we conducted an earth pillar simulation test ...The risk of soil phosphorus leaching increases in basin regions in light of large-scale use of phosphorus fertilizers because of agricultural modernization. In this study, we conducted an earth pillar simulation test on the infiltration threshold of red soil, Vaseline-coated PVC pipe, intact soil core, fine sand<span style="font-family:;" "="">,</span><span style="font-family:;" "=""> and nylon filter was used for Penetration test, which covers the largest area of the Dianchi Lake Basin in China. Results showed that</span><span style="font-family:;" "="">:</span><span style="font-family:;" "=""> 1) The contents of the total available phosphorus in algae (NaOH-P) and dissolved labile phosphorus (CaCl<sub>2</sub>-P) in red soil were consistent with the content of available phosphorus (Olsen-P) under different use patterns manifested by the law of greenhouse > open field > grassland. Grassland had the highest phosphorus sorption index (PSI), followed by </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">greenhouse and then by </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">open field. 2) <span>The leachate under the same use pattern had the characteristics of total phosphorus (TP) > particle phosphorus (PP) > total dissolved phosphorus (TDP) > dissolved organic phosphorus (DOP) > molybdate reactive phosphorus (MRP). T</span>he TP contents in the leachates of grassland, greenhouse, and open field were 0.46, 0.61, and 0.49 mg/L, respectively. DOP, TDP, PP, and MRP had similar contents, and their distributions in the three land types were consistent with that of TP. 3) Olsen-P had a significant correlation with TP, TDP, PP, and DOP in the leachates. Olsen-P of <40 mg/kg and PSI of >50 slightly influenced eutrophication. Moreover, Olsen-P of >40 and <70.90 mg/kg and PSI of >40 had minimal influence on the environment. Olsen-P of >70.90 mg/kg and PSI of <30 significantly influenced eutrophication in Dianchi Lake Basin. 4) When Olsen-P was >26.09 mg/kg, the TP content in the leachate increased sharply.</span>展开更多
Conversions from rural to urban land uses have the potential to greatly modify soil phosphorus (P) levels. Soils in shrubs, Masson pine forest, conifer and broadleaf mixed forest, evergreen broadleaved forest and ba...Conversions from rural to urban land uses have the potential to greatly modify soil phosphorus (P) levels. Soils in shrubs, Masson pine forest, conifer and broadleaf mixed forest, evergreen broadleaved forest and bamboo forest in the mid-subtropical region along an urban-rural gradient in Nanchang City, southern China, were analyzed for total P and P fractions using the modified Hedley P sequential fractionation method. Results show that the topsoil total P and total exactable P concentrations were significantly higher in the urban area (0.71 g·kg^-1 and 378.50 mg·kg^-1, respectively) than in the suburban (0.30 g·kg^-1 and 150.74 mg·kg^-1, respectively) and rural areas (0.31 g·kg^-1 and 147.38 mg·kg^-1, respectively) (p〈0.05). Among the five P fractions of resin-P, NaHCO3-P NaOH-P, Sonication-P and HCI-P, the relative abundance of HCl-P in urban forest soils (36%) was the highest and also significantly higher than in suburban (8%) and rural soils (6%), while NaOH-P was the dominant form in suburban (41%) and rural soils (50%). Phosphorus accumulation in the urban soils could affect the cycle of P in urban forest systems, particularly the HCl-P fraction that might rapidly enrich aquatic systems in urban areas.展开更多
Phosphorus (P) transported in runoff from broiler production areas is a potential source for nutrient enrichment of local surface waters. Capturing nutrients prior to runoff leaving the production area could reduce th...Phosphorus (P) transported in runoff from broiler production areas is a potential source for nutrient enrichment of local surface waters. Capturing nutrients prior to runoff leaving the production area could reduce the risk of transport. Commercially available systems for nitrogen (N) and P removal from stormwater are available but too expensive for widespread adoption on small, privately owned farms. The P adsorption capacities and hydraulic conductivities of locally-sourced iron red mud (RM) and aluminum water treatment residual (WT) were determined for potential on-farm treatment use. The byproducts were air-dried and separated into ≤2-, ≤6-, and ≤12.5-mm particle size fractions. Saturated hydraulic conductivity (HC) was determined for each particle-size fraction and results evaluated for the material’s ability to transmit a 25-year, 30-min rainfall of 6.6 cm. While the HC of ≤6-mm particles of each byproduct did not differ (p > 0.05;4.1 and 4.6 cm·min<sup>-1</sup>), for ≤12.5-mm particles it was greater (p > 0.05) for WT than RM (15.4 and 8.0 cm·min<sup>-1</sup>, respectively). However, all byproduct size fractions transmitted flow sufficiently to accommodate the baseline storm. Phosphorous adsorption maxima of ≤2-mm fraction for RM and WT were 25 and 10 g·P·kg<sup>-1</sup>, respectively. Using a solution containing 6 mg·P·L<sup>-1</sup>, rep-resenting the measured runoff-P concentration from areas adjacent to poultry house ventilation fans, the ≤2-mm fraction of RM removed 98% of added P and WT 84%. The ≤6-mm fraction of RM and WT removed 56% and 57% of added P, respectively, while the ≤12.5-mm fraction adsorbed only 28% and 10%. Results indicate the potential use of low-cost RM and WT byproducts to sequester P in runoff prior to P leaving poultry farm production areas.展开更多
Freshwater impairment by eutrophication, as a result of excessive phosphorus (P) inputs from runoff in particular, remains a ubiquitous environmental concern. A common issue with systems designed to remove P and nitro...Freshwater impairment by eutrophication, as a result of excessive phosphorus (P) inputs from runoff in particular, remains a ubiquitous environmental concern. A common issue with systems designed to remove P and nitrogen (N) from runoff is their reduced effectiveness under high-flow conditions. To over-come this, P removal from broiler-house fan dust would be more effective if removal occurred at the nutrient source, where the water volume is limited to direct rainfall. The P removal efficiencies of different thicknesses of locally sourced, iron-rich red mud (RM) generated during the manufacture of steel belts for tires and alum-based drinking water treatment residual (WT) byproducts were investigated. Byproduct thicknesses of 4, 8, and 12 cm were tested using 57-L leaching columns. The columns were filled with the specified byproduct thickness and a 3-mm thickness of poultry house dust was surface applied prior to receiving six, 30-min simulated rainfalls (at 7 cm·hr-1) at 1-day intervals. The 8-cm thickness of both RM and WT outperformed the other thicknesses in terms of sorbing P released from the added broiler house dust, removing 99 and 96% of the added P, respectively, over the six simulated rainfall events. The 12-cm thickness of both RM and WT showed no additional benefit for P removal over the 8-cm thickness. As the 4-cm-thick WT treatment was less effective (89% of added P removed), the 8-cm thickness was the optimal thickness for field testing. Locally sourced materials with large P-sorbing capacities can offer a convenient, relatively inexpensive alternative for P removal from areas around poultry houses impacted by P-containing, exhausted broiler house dust.展开更多
Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphoru...Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248,22208138)Natural Science Foundation of Liaoning Province(2020-MS-137,2023-MS-140)+7 种基金Doctoral Start-up Foundation of Liaoning Province,China(2020-BS-081)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training center(IC180100005)schemesCSIRO Energy center and Kick-Start Project,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)Young Scientific Project of the Department of Education of Liaoning Province(LJKQZ20222263,LQN202008)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization,Anhui University of Technology(CHV22-05).
文摘Red phosphorus has been well-recognized as promising anode materials for lithium-ion batteries(LIBs)and potassium-ion batteries(PIBs)due to its extremely high theoretical capacity and low cost.However,the huge volume change and poor electric conductivity severely limit its further practical application.Herein,the nanoscale ultrafine red phosphorus has been successfully confined in a three-dimensional pitch-based porous carbon skeleton composed of well-interconnected carbon nanosheets through the vaporization-condensation method.Except for the traditional requirement of high electric conductivity and stable mechanical stability,the micropores and small mesopores in the porous carbon matrix centered at 1 to 3 nm and the abundant amount of oxygen-containing functional groups are also beneficial for the high loading and dispersion of red phosphorus.As anode for LIBs,the composite exhibits high reversible discharge capacities of 968 mAh g^(-1),excellent rate capabilities of 593 mAh g^(-1)at 2 A g^(-1),and long cycle performance of 557 mAh g^(-1)at 2 A g^(-1).More impressively,as the anode for PIBs,the composite presents a high reversible capacity of 661 mAh g^(-1)and a stable capacity of 312 mAh g^(-1)at 0.5 A g^(-1)for 500 cycles with a capacity retention up to 84.3%.This work not only sheds light on the structure design of carbon hosts with specific pore structure but also open an avenue for high value-added utilization of coal tar pitch.
文摘[Objectives] The soil phosphorus balance and potential risk of phosphorus loss under different phosphorus application rates in sugarcane red soil in Guangxi were evaluated to provide reference for scientific and rational application of phos- phorus fertilizer and reduction of environmental pollution. [Methods] A field trial and simulated rainfall experiment were carried out. In the field experiment, five phospho- rus levels (0, 75, 150, 300 and 600 kg P2OJhm2) were set, the yield of sugarcane stems and leaves were measured, and their phosphorus content was determined to obtain aboveground P accumulation and P surplus in soil. After sugarcane harvest- ing, calcium magnesium phosphate and potassium dihydrogen phosphate were ap- plied to soil with different levels of phosphorus to conduct the simulated rainfall ex- periment based on monthly rainfall from May to September in Guangxi during 2000-2015. The leachate was collected to analyze the concentration and total amount of phosphorus to obtain the regression equations between available phos- phorus content in soil and the increase of phosphorus concentration in leachate. [Results] Sugarcane yield increased significantly when phosphorus application rate was 150 kg P:~OJhm2. When phosphorus application rate exceeded this value, the yield of sugarcane stems and aboveground part was also significantly higher than the treatment without phosphorus application, but the increase of yield was similar to the treatment with phosphorus application rate of 150 kg P2OJhm2. According to the relationship equation between phosphorus application rate and soil Olsen-P con- tent as well as the relationship equations between the increment of P concentration in leachate and soil Olsen-P content in the treatments with calcium magnesium phosphate and KH2PO4, the increment of P concentration in leachate was 0.02-0.04 mg/L when phosphorus application rate was 75 kg P2OJhm2; the increment of P concentration in leachate was 0.07-0.10 mg/L as phosphorus application rate was 600 kg P2OJhm2. [Conclusions] The reasonable application rate of phosphorus fer- tilizer for sugarcane is 150 kg P2Or/hm2. However, long-term continuous application of phosphorus fertilizer can promote the enhancement of available phosphorus con- tent in soil and increase the risk of phosphorus loss from sugarcane fields.
基金Supported by the National Natural Science Foundation of China (41101285)the Research Fund for Young Teachers of Qiongzhou University,China (QYQN201124)~~
文摘[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.
基金Project supported by the National Natural Science Foundation of China (No. 40025104).
文摘The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.
文摘Scrippsiella trochoidea (Stein) Loeblich III was grown in a nitrogen or phosphorus limited batch culture system in laboratory. Growth rates and cellular Chl a were measured as functions of nitrate and phosphate concentrations. Growth rates were hyperbolic with both nitrate and phosphate concentration and fit the Monod equation. The minimum cell quota of nitrogen and phosphorus and then the optimum N:P ratio of S. trochoidea were estimated in this study. Measurement of phosphate concentration in Jiaozhou Bay suggest that phosphorus is the limiting factor of S. trochoidea growth.
基金supported by the Natural Science Foundation of China for Youth(40403003)National Key Basic Research Program(2006CB701406)Key Project of Natural Science Foundation of China(40332020),and is a contribution to IGCP 463/555.
文摘The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial records of reactive phosphorus in the black shale of the Gyabula Formation and oceanic red beds of the Chuangde Formation, Southern Tibet. Results indicate that the principal reactive phosphorus species is the authigenic and carbonate-associated phosphorus (CAP) in the Gyabula Formation and iron oxides-associated phosphorus (FeP) in the Chuangde Formation which accounts for more than half of their own total phosphorus content. While the authigenic and carbonate-associated phosphorus (CAP) is almost equal in the two Formations; the iron oxidesassociated phosphorus is about 1.6 times higher in the Chuangde Formation than that in the Gyabula Formation resulting in a higher content of the total phosphorus in the Chuangde Formation. According to the observations on the marine phosphorus cyde in Modern Ocean, it is found that preferential burial and regeneration of reactive phosphorus corresponds to highly oxic and reducing conditions, respectively, leading to the different distribution of phosphorus in these two distinct type of marine sediments. It is the redox-sensitive behavior of phosphorus cycle to the different redox conditions in the ocean and the controlling effects of phosphorus to the marine production that stimulate the local sedimentary transition from the Cretaceous black shale to the oceanic red beds.
基金supported by Basic Sci-ence Research Program through National Research Foundation of Korea(NRF)founded by the ministry of Education(NRF-2017R1D1A1B03030456)
文摘Supercapacitors have attracted much attention in the field of electrochemical energy storage.However,material preparation,stability,performance as well as power density limit their applications in many fields.Herein,a sponge-like red phosphorus@graphene(rP@rGO)negative electrode and a Ni2P positive electrode were prepared using a simple one-step method.Both electrodes showed excellent performances(294 F g^−1 and 1526.6 F g^−1 for rP@rGO and Ni2P,respectively),which seem to be the highest among all rP@rGO-and Ni2P-based electrodes reported so far.The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes.Compared to other asymmetric devices,the device,which attained a high operating window of up to 1.6 V,showed high energy and power density values of 41.66 and 1200 W kg−1,respectively.It also has an excellent cyclic stability up to 88%after various consecutive charge/discharge tests.Additionally,the device could power commercial light emitting diodes and fans for 30 s.So,the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications.
文摘The growth and interspecies competition of two red tide algal species Thalassiosira pseudonana Hasle et Heimdal and Gymnodinium sp. were studied under different concentration ratios of nitrogen to phosphorus, and the algal hatch culture experiments were conducted. The physiological and biochemical indexes were measured periodically, including the maximum comparing growth rate, relative growth rate, average double time and chlorophyll a concentration. The results showed that when the concentration ratio of nitrogen to phosphorus was 16: 1, the maximum comparing growth rate, relative growth rate and chlorophyll a concentration of Thalassiosira pseudonana all reached the highest,and average double time was the shortest. This implied that the optimal concentration ratio of nitrogen to phosphorus of Thalassiosira pseudonana is 16: 1. When the concentration ratio of nitrogen to phosphorus was 6:1, the maximum comparing growth rate, relative growth rate and the chlorophyll a concentration of Gymnodinium sp. reached the highest, and average double time was the shortest, so the optimal concentration ratio of nitrogen to phosphorus of Gymnodinium sp. is 6: 1. From the growth curves as indicated both in the cell density and the chlorophyll a concentration, it is suggested that the influence of concentration ratio of nitrogen to phosphorus on the chlorophyll a concentration and the cell density are almost the same. Different concentration ratios of nitrogen to phosphorus had weak influence on community succession and the competition between the two algae. Gymnodinium sp. may use the phosphorus in vivo for growth, so it is important to pay attention to the concealment of phosphorus, in order to avoid the outbreak of red tide. On the basis of the importance of nitrogen and phosphorus and the ratio of their concentration, the possible outbreak mechanism of red tide of the two algae was also discussed.
基金Funded by the National Natural Science Foundation of China(No.51503041)the Natural Science Foundation of Fujian Province,China(No.2018J01752)。
文摘The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials,thus,there is an urgent need to exploit effective technology to modify red phosphorus.Functionalized lignin-based compounds can provide a great potential in improving the preservation and processing of red phosphorus.Here,we prepared melamine modified lignin/aluminum phosphate coated red phosphorus(LMAP@RP)and used it as the flame retardant of acrylonitrile-butadiene-styrene(ABS)resin.With 25wt%loading LMAP@RP,the ABS samples show excellent flame inhibiting capacity and reached UL-94 V-0 rating.Cone calorimetry test results show that the peak heat release rate,total heat release and total smoke release of ABS/25LMAP@RP are reduced strikingly by 64.6%,49.3%,and 30.1%,respectively.The char residue is 15.36wt%and the char layer is continuous and dense.The outstanding flame retardant and smoke-suppressant performances of LMAP@RP show its application prospect for ABS.
文摘A field experiment with an early rice-late rice rotation was carried out on a paddy soil derived from red soil in the southern part of Zhejiang Province to elucidate the effect of excess P application on some important characteristics of soil properies and its relation to nutrient status and grain yields of rice crops.The experimental results indicated that adequate fertilizer P (15 kg P hm-2) could increase the content of soil available P at the tillering stage of early rice, the contents of N, P and K in the shoots of early rice at primary growth stages, and the grain yield of early rice by increasing valid ears per hectare and weight per thousand grains, which was mainly related to the higher contents of reduced, non-reduced and total sugar in the shoots at the heading stage. And early rice supplied with excessive P could not yield more than that applied with adequate P, due to the reduction in the valid grain percentage and weight per thousand grains.In addition, onestime excess P supply at a rate as high as 90 kg P hm-2 could not improve the soil P fertility in case the soil available P content was lower than the initial (3.74 mg kg-1 soil) after an early rice-late rice rotation, and made a decline in the grain yield increased by per kilogram fertilizer P. Thus, one-time excess P supply should not be adopted for soils with a large P fixation capacity like the paddy soils derived from red soils.
文摘The activation of soil-fixed phosphorus is a long-term concern in soil science. In order to enhance the activation effect to soil-fixed phosphorus in red soil, different modified zeolite, through physical, chemical method and the associated both physics and chemistry, was used in this paper. The results showed as following: 1) the activated ability to soil-fixed phosphorus in red soil for modified zeolite was higher than the common one signally. Order of the ability for all kinds of modification zeolite in absolute activation amount and activation rate was: Modified in high temperature ammonium saturated zeolite > Ammonium saturated zeolite > Modified in high temperature zeolite > Common zeolite. 2) The increasing rate of modified phosphorus in high temperature ammonium saturated zeolite and ammonium saturated zeolite had a decline trend with time postponed while that for modified phosphorus in high temperature zeolite and routine zeolite was rising gradually with time postponed. For ammonium saturated zeolite, the increasing rate of phosphorus in low available phosphorus content red soil was significantly faster than that in red soil with the higher content of available phosphorus. 3) The activation rate for the same modified zeolite showed difference in different phosphorus level soil. The order is: SP<sub>high</sub> > SP<sub>medium</sub> > SP<sub>low</sub>.
基金support from the National Natural Science Foundation of China(51976143)the Guangdong Key Areas Research and Development Program(2020B090904001 and 2019B090909003)。
文摘The practical applications of high-capacity alloy-type anode materials in sodium-ion batteries(SIBs)are challenged by their vast volume effects and resulting unstable electrode-electrolyte interphases during discharge-charge cycling.Taking red phosphorus(P)/carbon anode material as an example,we report an on-site conversion reaction to intentionally eliminate the volume effect-dominated surface P and yield an ionically conducting layer of Na3PS4solid-state electrolyte on the composite.Such a surface reconstruction can significantly suppress the electrode swelling and simultaneously enable the activation energy of interfacial Na+transfer as low as 36.7 k J mol^(-1),resulting in excellent electrode stability and ultrafast reaction kinetics.Consequently,excellent cycling performance(510 mA h g^(-1)at 5 A g^(-1)after 1000 cycles with a tiny capacity fading rate of 0.016%per cycle)and outstanding rate capability(484 mA h g^(-1)at 10 A g^(-1)are achieved in half cells.When coupled with Na_(3)V_(2)(PO4)3cathode,the full cells exhibit 100%capacity retention over 200 cycles at 5C with an average Coulombic efficiency of 99.93%and a high energy density of 125.5 W h kg^(-1)at a power density of 8215.6 W kg^(-1)(charge or discharge within~49 s).Remarkably,the full cell can steadily operate at a high areal capacity of 1.9 mA h cm^(-2),the highest level among red P-based full SIBs ever reported.
基金financially supported by the National Natural Science Foundation of China(51808303 and 51672143)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province(DC2000000961)+2 种基金the Taishan Scholar Program,Outstanding Youth of Natural Science in Shandong Province(JQ201713)the Natural Science Foundation of Shandong Province(ZR2019BEE027)the State Key Laboratory of BioFibers and Eco-Textiles(Qingdao University,No.ZKT25 and ZKT30)。
文摘Secondary batteries are widely used in energy storage equipment.To obtain high-performance batteries,the development and utilization of electrode materials with cheap price and ideal theoretical gravimetric and volumetric specific capacities have become particularly important.Naturally abundant and low-cost red phosphorus(RP)is recognized as an anode material with great promise because it has a theoretical capacity of 2596 mA h g^(-1) in lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs).However,owing to the inferior discharging,the capacity of pure RP has a fast decay.Nanoconfinement of RP nanoparticles within porous carbon framework is one of the efficient methods to overcome these problems.In this review,we introduce the recent progress of RP confinement into carbon matrix as an energy storage anode material in LIBs,SIBs and potassium-ion batteries(PIBs).The synthetic strategies,lithiation/sodia tion/potassiation mechanism,and the electrochemical performances of RP/carbon composites(RP/C)with kinds of designed structures and P-C and P-O-C bond by kinds of methods are included.Finally,the challenges and perspectives of RP faced in the application development as anodes for LIBs/SIBs/PIBs are covered.This review will strengthen the understanding of composites of RP nanoparticles in porous carbon materials and aid researchers to carry out future work rationally.
文摘The effect of La on nitrification, P transformation and phenol decomposition in red soil was studied by incubation and pot culture experiments. La at low concentration has stimulative effect on soil nitrification and P transformation while its high concentration has inhibitory effects, and the inhibition is strengthened with increasing concentration of La. La has strongly inhibitory effect on soil phenol decomposition and the inhibition is strengthened with increasing concentration of La. When the incubation time is prolonged, the inhibitory effect of La on soil nitrification and phenol decomposition tends to decrease.
文摘Proper mineral nutrition of red clover especially on the acid soils is a prerequisite for the realization of maximum potential for seed yield. The field experiment with four cultivars of red clover were established on soil having a pH (in H2O) of 4.8, in order to in conditions of dense planting (20 cm inter row) analyzes the effect of foliar application of phosphorus and potassium (PK) on yield and yield components (number of stems/m2, number of inflorescences/m2, number of inflorescences/stem, number of flowers/inflorescence, number of seeds/inflorescence and one thousand grain weight). Regardless of foliar treatment with PK, varieties differed in the number of inflorescences/m2, number of flowers/inflorescence, number of seeds/inflorescence and seed yield. Foliar application of PK in the phase of intensive growth of red clover had a positive impact on number of stem/m2, number of inflorescences/m2 and seed yield in all varieties, as well as on the number of flowers/inflorescence, number of seeds/inflorescence in cultivar Viola.
文摘The risk of soil phosphorus leaching increases in basin regions in light of large-scale use of phosphorus fertilizers because of agricultural modernization. In this study, we conducted an earth pillar simulation test on the infiltration threshold of red soil, Vaseline-coated PVC pipe, intact soil core, fine sand<span style="font-family:;" "="">,</span><span style="font-family:;" "=""> and nylon filter was used for Penetration test, which covers the largest area of the Dianchi Lake Basin in China. Results showed that</span><span style="font-family:;" "="">:</span><span style="font-family:;" "=""> 1) The contents of the total available phosphorus in algae (NaOH-P) and dissolved labile phosphorus (CaCl<sub>2</sub>-P) in red soil were consistent with the content of available phosphorus (Olsen-P) under different use patterns manifested by the law of greenhouse > open field > grassland. Grassland had the highest phosphorus sorption index (PSI), followed by </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">greenhouse and then by </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">open field. 2) <span>The leachate under the same use pattern had the characteristics of total phosphorus (TP) > particle phosphorus (PP) > total dissolved phosphorus (TDP) > dissolved organic phosphorus (DOP) > molybdate reactive phosphorus (MRP). T</span>he TP contents in the leachates of grassland, greenhouse, and open field were 0.46, 0.61, and 0.49 mg/L, respectively. DOP, TDP, PP, and MRP had similar contents, and their distributions in the three land types were consistent with that of TP. 3) Olsen-P had a significant correlation with TP, TDP, PP, and DOP in the leachates. Olsen-P of <40 mg/kg and PSI of >50 slightly influenced eutrophication. Moreover, Olsen-P of >40 and <70.90 mg/kg and PSI of >40 had minimal influence on the environment. Olsen-P of >70.90 mg/kg and PSI of <30 significantly influenced eutrophication in Dianchi Lake Basin. 4) When Olsen-P was >26.09 mg/kg, the TP content in the leachate increased sharply.</span>
基金funded by the National Natural Science Foundation of China(No.3060047&30960311)Natural Science Foundation of Jiangxi Provinces(No.2007GQN1935)
文摘Conversions from rural to urban land uses have the potential to greatly modify soil phosphorus (P) levels. Soils in shrubs, Masson pine forest, conifer and broadleaf mixed forest, evergreen broadleaved forest and bamboo forest in the mid-subtropical region along an urban-rural gradient in Nanchang City, southern China, were analyzed for total P and P fractions using the modified Hedley P sequential fractionation method. Results show that the topsoil total P and total exactable P concentrations were significantly higher in the urban area (0.71 g·kg^-1 and 378.50 mg·kg^-1, respectively) than in the suburban (0.30 g·kg^-1 and 150.74 mg·kg^-1, respectively) and rural areas (0.31 g·kg^-1 and 147.38 mg·kg^-1, respectively) (p〈0.05). Among the five P fractions of resin-P, NaHCO3-P NaOH-P, Sonication-P and HCI-P, the relative abundance of HCl-P in urban forest soils (36%) was the highest and also significantly higher than in suburban (8%) and rural soils (6%), while NaOH-P was the dominant form in suburban (41%) and rural soils (50%). Phosphorus accumulation in the urban soils could affect the cycle of P in urban forest systems, particularly the HCl-P fraction that might rapidly enrich aquatic systems in urban areas.
文摘Phosphorus (P) transported in runoff from broiler production areas is a potential source for nutrient enrichment of local surface waters. Capturing nutrients prior to runoff leaving the production area could reduce the risk of transport. Commercially available systems for nitrogen (N) and P removal from stormwater are available but too expensive for widespread adoption on small, privately owned farms. The P adsorption capacities and hydraulic conductivities of locally-sourced iron red mud (RM) and aluminum water treatment residual (WT) were determined for potential on-farm treatment use. The byproducts were air-dried and separated into ≤2-, ≤6-, and ≤12.5-mm particle size fractions. Saturated hydraulic conductivity (HC) was determined for each particle-size fraction and results evaluated for the material’s ability to transmit a 25-year, 30-min rainfall of 6.6 cm. While the HC of ≤6-mm particles of each byproduct did not differ (p > 0.05;4.1 and 4.6 cm·min<sup>-1</sup>), for ≤12.5-mm particles it was greater (p > 0.05) for WT than RM (15.4 and 8.0 cm·min<sup>-1</sup>, respectively). However, all byproduct size fractions transmitted flow sufficiently to accommodate the baseline storm. Phosphorous adsorption maxima of ≤2-mm fraction for RM and WT were 25 and 10 g·P·kg<sup>-1</sup>, respectively. Using a solution containing 6 mg·P·L<sup>-1</sup>, rep-resenting the measured runoff-P concentration from areas adjacent to poultry house ventilation fans, the ≤2-mm fraction of RM removed 98% of added P and WT 84%. The ≤6-mm fraction of RM and WT removed 56% and 57% of added P, respectively, while the ≤12.5-mm fraction adsorbed only 28% and 10%. Results indicate the potential use of low-cost RM and WT byproducts to sequester P in runoff prior to P leaving poultry farm production areas.
文摘Freshwater impairment by eutrophication, as a result of excessive phosphorus (P) inputs from runoff in particular, remains a ubiquitous environmental concern. A common issue with systems designed to remove P and nitrogen (N) from runoff is their reduced effectiveness under high-flow conditions. To over-come this, P removal from broiler-house fan dust would be more effective if removal occurred at the nutrient source, where the water volume is limited to direct rainfall. The P removal efficiencies of different thicknesses of locally sourced, iron-rich red mud (RM) generated during the manufacture of steel belts for tires and alum-based drinking water treatment residual (WT) byproducts were investigated. Byproduct thicknesses of 4, 8, and 12 cm were tested using 57-L leaching columns. The columns were filled with the specified byproduct thickness and a 3-mm thickness of poultry house dust was surface applied prior to receiving six, 30-min simulated rainfalls (at 7 cm·hr-1) at 1-day intervals. The 8-cm thickness of both RM and WT outperformed the other thicknesses in terms of sorbing P released from the added broiler house dust, removing 99 and 96% of the added P, respectively, over the six simulated rainfall events. The 12-cm thickness of both RM and WT showed no additional benefit for P removal over the 8-cm thickness. As the 4-cm-thick WT treatment was less effective (89% of added P removed), the 8-cm thickness was the optimal thickness for field testing. Locally sourced materials with large P-sorbing capacities can offer a convenient, relatively inexpensive alternative for P removal from areas around poultry houses impacted by P-containing, exhausted broiler house dust.
基金financially supported by National Nature Science Foundation of China(Grant No.22272175,21805278,52072323,52122211)the Fujian Science and Technology Planning Projects of China(2020T3022,2022T3067)+3 种基金the National Key R&D Program of China(No.2021YFB3500400)the Future-prospective and Stride-across Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-GH02)the Youth Innovation Foundation of Xiamen City(Grant No.3502Z20206083)the Opening Project of PCOSS,Xiamen University(Grant No.202014)。
文摘Phosphorus is the potential anode material for emerging potassium-ion batteries(PIBs)owing to the highest specific capacity and relatively low operation plateau.However,the reversible delivered capacities of phosphorus-based anodes,in reality,are far from the theoretical capacity corresponding to the formation of K3P alloy.And,their underlying potassium storage mechanisms remain poorly understood.To address this issue,for the first time,we perform high-resolution solid-state31P NMR combined with XRD measurements,and density functional theory calculations to yield a systemic quantitative understanding of(de)potassiation reaction mechanism of phosphorus anode.We explicitly reveal a previously unknown asymmetrical nanocrystalline-to-amorphous transition process via rP←→(K_(3)P_(11),K_(3)P_(7),beta-K_(4)P_(6))←→(alpha-K4P6)←→(K_(1-x)P,KP,K_(4-x)P3,K_(1+x)P)←→(amorphous K4P3,amorphous K3P)that are proceed along with the electrochemical potassiation/depotassiation processes.Additionally,the corresponding KP alloys intermediates,such as the amorphous phases of K_(4)P_(3),K_(3)P,and the nonstoichiometric phases of“K_(1-x)P”,“K_(1+x)P”,“K_(4-x)P_(3)”are experimentally detected,which indicating various complicated K-P alloy species are coexisted and evolved with the sluggish electrochemical reaction kinetics,resulting in lower capacity of phosphorus-based anodes.Our findings offer some insights into the specific multi-phase evolution mechanism of alloying anodes that may be generally involved in conversion-type electrode materials for PIBs.