Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF i...Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.展开更多
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical...Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.展开更多
Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain s...Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain seldom explored.First,an event-oriented drought chronology with detailed spatiotemporal evolutions is urgently required.Second,the complex migration patterns and diversity of synchronous temperature extremes need to be quantitatively investigated.Accordingly,the main achievements of our investigation are as follows.We produced an event-oriented set of extreme meteorological droughts over China through the application of a newly developed 3D DBSCAN-based detection method(deposited on https://doi.org/10.25452/figshare.plus.25512334),which was verified with a historical atlas and monographs on a case-by-case basis.In addition,distinctive migration patterns(i.e.,stationary/propagation types)are identified and ranked,considering the differences in latitudinal zones and coastal/inland locations.We also analyze the diversity of synchronous temperature extremes(e.g.,hotness and coldness).Notably,an increasing trend in hot droughts occurred over China since the late 1990s,predominantly appearing to the south of 30°N and north of 40°N.All drought events and synchronous temperature extremes are ranked using a comprehensive magnitude index,with the 2022 summer-autumn Yangtze River hot drought being the hottest.Furthermore,Liang-Kleeman information flow-based causality analysis emphasizes key areas where the PDO and AMO influenced decadal variations in coverages of droughts and temperature extremes.We believe that the achievements in this study may offer new insights into sequential mechanism exploration and prediction-related issues.展开更多
Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing ...Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing it with temperate birds can enhance our understanding of bird migration behaviour and its underlying mecha-nisms.In this study,we explored the migration behaviour of a breeding population of the Barn Swallow(Hirundo rustica)in Zhanjiang,southern China,a region located in the northern tropics,using light-level geolocators.From 2021 to 2023,we deployed geolocators on 92 breeding swallows and retrieved geolocators successfully from 23 individuals.These swallows all exhibited migratory behaviour,and wintering on various islands in Southeast Asia.They displayed sex differences in their wintering locations.All males concentrated in Borneo,while females primarily chose Borneo but also dispersed to the Philippines,South China Sea,and Vietnam for wintering.The studied swallow population adopted a seasonal migration pattern of“indirect in autumn,direct in spring”,bypassing the ecological barrier of the South China Sea in autumn and tending to directly cross it in spring migration.Moreover,the distance and duration of autumn migration was significantly longer than those of the spring migration.Compared to temperate Barn Swallows,the Barn Swallow population breeding in Zhanjiang adopts a pattern of“intra-tropical migration”and initiates autumn migration earlier.The formation of their migration pattern may be limited by ecological and physiological factors.展开更多
During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas d...During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.展开更多
During the 1950s the Hula wetlands and old lake were drained and the land converted utilization to agriculture and ecotourism. As a result of the drainage, the Peat Soil was exposed to atmospheric oxygen. The geochemi...During the 1950s the Hula wetlands and old lake were drained and the land converted utilization to agriculture and ecotourism. As a result of the drainage, the Peat Soil was exposed to atmospheric oxygen. The geochemical environment was modified from reductive to oxidative and the Nitrogen in it was converted from Ammonium to Nitrate. Intensive migration of Nitrate from the Hula Valley induced a national concern of water quality deterioration in the lake which was dissipated when Nitrogen deficiency was developed in Lake Kinneret. Forty years after drainage the ecosystem structure was renovated (Hula Project, HP) aimed at agricultural management and nutrient migration reduction. The paper examines through evaluation of the ecological data record (1993-2018) the impact of hydrological changes, attributed to the HP implementation on nutrient dynamics within surface waters in the Hula Valley. It is suggested that soil moisture elevation by irrigation in summer reduced Phosphorus and enhanced Nitrate concentrations.展开更多
It was a 36-year-old patient, 5th Pregnancy, 5th Delivery, 4 live children, and I deceased, had a consultation in the department for the removal of implants. Questioning revealed that she had had the implant three yea...It was a 36-year-old patient, 5th Pregnancy, 5th Delivery, 4 live children, and I deceased, had a consultation in the department for the removal of implants. Questioning revealed that she had had the implant three years ago without medical follow-up. It was in view of the difficulties in extracting the capsule that the chest X-ray and CT scan carried out concluded that the implant had migrated into a branch of the left pulmonary artery. Therapeutic abstention has been the attitude of cardiovascular surgeons.展开更多
The high mortality rate associated with gastric cancer(GC)has resulted in an urgent need to identify novel therapeutic targets for GC.This study aimed to investigate whether GAIP interacting protein,C terminus 1(GIPC1...The high mortality rate associated with gastric cancer(GC)has resulted in an urgent need to identify novel therapeutic targets for GC.This study aimed to investigate whether GAIP interacting protein,C terminus 1(GIPC1)represents a therapeutic target and its regulating mechanism in GC.GIPC1 expression was elevated in GC tissues,liver metastasis tissues,and lymph node metastases.GIPC1 knockdown or GIPC1 blocking peptide blocked the platelet-derived growth factor receptor(PDGFR)/PI3K/AKT signaling pathway,and inhibited the proliferation and migration of GC cells.Conversely,GIPC1 overexpression markedly activated the PDGFR/PI3K/AKT signaling pathway,and promoted GC cell proliferation and migration.Furthermore,platelet-derived growth factor subunit BB(PDGF-BB)cytokines and the AKT inhibitor attenuated the effect of differential GIPC1 expression.Moreover,GIPC1 silencing decreased tumor growth and migration in BALB/c nude mice,while GIPC1 overexpression had contrasting effects.Taken together,our findings suggest that GIPC1 functions as an oncogene in GC and plays a central role in regulating cell proliferation and migration via the PDGFR/PI3K/AKT signaling pathway.展开更多
Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced ph...Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.展开更多
Background:The role of Claudin-1 in tongue squamous cell carcinoma(TSCC)metastasis needs further clarification,particularly its impact on cell migration.Herein,our study aims to investigate the role of Claudin-1 in TS...Background:The role of Claudin-1 in tongue squamous cell carcinoma(TSCC)metastasis needs further clarification,particularly its impact on cell migration.Herein,our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms.Methods:36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1.Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells.Claudin-1 knockdown cell lines were established using short hairpin RNA transfection.Migration effects were assessed through wound healing assays.Furthermore,the expression of EMTassociated molecules was measured via western blotting.Results:Claudin-1 expression decreased as TSCC malignancy increased.Adenosine monophosphate–activated protein kinase(AMPK)activation led to increased Claudin-1 expression and membrane translocation,inhibiting TSCC cell migration and epithelial–mesenchymal transition(EMT).Conversely,Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation.Conclusions:Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.展开更多
Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context...Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context still unclear.Methods:The colorectal carcinoma cell lines HCT116 and SW620 were exposed to TNF-αfor a period of 24 h to instigate an inflammatory response.Subsequent assessments were conducted to measure the expression of inflammatory cytokines,the activity within the p38 mitogen-activated protein kinase(p38 MAPK)and Phosphoinositide 3-Kinase/AKT Serine/Threonine Kinase pathway(PI3K/AKT)signaling cascades.Transcriptome sequencing and subsequent integrative analysis with the Cancer Genome Atlas(TCGA)program database revealed a significant downregulation of the key factor MAD2L2.Enhancement of MAD2L2 expression was facilitated via lentiviral vector-mediated transfection.The influence of this overexpression on TNF-α-prompted inflammation,intracellular signaling pathways,and the migratory and invasive behaviors of the colorectal cancer cells was then scrutinized.Results:TNF-αtreatment significantly increased the expression of Interleukin-1 beta(IL-1β)and Interleukin-6(IL-6),activated the MAPK p38 and PI3K/AKT signaling pathways,and enhanced cell migration and invasion.A decrease in MAD2L2 expression was observed following TNF-αtreatment.However,overexpression of MAD2L2 reversed the effects of TNF-α,reducing IL-1βand IL-6 levels,attenuating PI3K/AKT pathway activation,and inhibiting cell migration and invasion.Conclusions:Overexpression of MAD2L2 attenuates the pro-inflammatory effects of TNF-α,suggesting that MAD2L2 plays a protective role against TNF-α-induced migration and invasion of colorectal carcinoma cells.Therefore,MAD2L2 holds potential as a therapeutic target in the treatment of colorectal cancer.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in...In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.展开更多
Soaring bird migration often relies on suitable terrain and airflow;therefore,route selection is vital for successful migration.While age and experience have been identified as key factor influencing migration route s...Soaring bird migration often relies on suitable terrain and airflow;therefore,route selection is vital for successful migration.While age and experience have been identified as key factor influencing migration route selection among soaring raptors in the African-Eurasian Flyway,how they shape the migration route of soaring raptors in East Asia is still largely unknown.In this study,we investigated potential variations in the routes and timing in autumn migration of juvenile and older soaring birds,using count data of Greater Spotted Eagles(Clanga clanga)from two coastal sites and two inland sites in China.From 2020 to 2023,we recorded a total of 340 individuals,with the highest site averaging over 90 individuals per autumn,making it one of the world’s top single-season counts and thus a globally important site for this species.We found that 82% and 61% records from coastal sites were juveniles,significantly higher than inland sites(15% and 24%).Juveniles at all four sites exhibited markedly earlier median passage time than non-juveniles,with brief overlapping in their main migration periods.Both coastal sites are located on the tip of peninsulas stretching southwest,requiring long overwater flights if crossing the Bohai Bay or Beibu Gulf,which would be energetically demanding and increase mortality risk.Experienced individuals may have learned to avoid such terrain and subsequent detour,while juveniles are more prone to enter these peninsulas due to lack of experience and opportunities for social learning,or following other raptor species that are more capable of powered flight.Our findings highlight the importance of age and experience in migration route selection of large soaring birds.展开更多
Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rota...Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.展开更多
Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist...Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.展开更多
Social anxiety is a common psychological problem among left-behind children(LBC)and has been a popular issue in recent years.Children with higher levels of social anxiety have more emotional and behavioral problems an...Social anxiety is a common psychological problem among left-behind children(LBC)and has been a popular issue in recent years.Children with higher levels of social anxiety have more emotional and behavioral problems and are prone to negative life events.Although several studies have explored the differences in social anxiety between LBC and non-left-behind children(N-LBC),the findings have not been consistent.In this study,a systematic review and meta-analysis method was used,with 411 papers retrieved on October 01,2023,from Pubmed,Embase,Web of Science,and Chinese databases(CNKI,VIP,and Wanfang)(PROSPERO registry number:CRD42023472463).Twenty-one studies met the research criteria and included 11,254 LBC and 13,096 N-LBC.LBC scored significantly higher for social anxiety([WMD(95%CI):0.35[0.23,0.48],p<0.001])and social avoidance and distress([WMD(95%CI):0.35[0.23,0.48],p<0.001]).Subgroup analyses showed significant differences in effect sizes for the overall proportion of children left behind(p=0.02).In addition,different types of parental migration may influence the social anxiety of LBC,double-parent migration was associated higher social anxiety than father migration(p<0.001).Future research should focus on treatments to decrease social anxiety of left-behind children.These findings suggest that due to the long-term absence of parental migration,LBC are more vulnerable to negative emotional experiences and behaviours such as anxiety,distress,and avoidance during social interaction,especially for those with both parents absent from the home.Future research should focus on treatments to reduce social anxiety in LBC.展开更多
Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interfe...Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.展开更多
基金supported by the Key Program of Natural Science Foundation of Shaanxi Province,No.2021JZ-60(to HZ)。
文摘Macrophage migration inhibitory factor(MIF),a multifunctional cytokine,is secreted by various cells and participates in inflammatory reactions,including innate and adaptive immunity.There are some evidences that MIF is involved in many vitreoretinal diseases.For example,MIF can exacerbate many types of uveitis;measurements of MIF levels can be used to monitor the effectiveness of uveitis treatment.MIF also alleviates trauma-induced and glaucoma-induced optic nerve damage.Furthermore,MIF is critical for retinal/choroidal neovascularization,especially complex neovascularization.MIF exacerbates retinal degeneration;thus,anti-MIF therapy may help to mitigate retinal degeneration.MIF protects uveal melanoma from attacks by natural killer cells.The mechanism underlying the effects of MIF in these diseases has been demonstrated:it binds to cluster of differentiation 74,inhibits the c-Jun N-terminal kinase pathway,and triggers mitogen-activated protein kinases,extracellular signal-regulated kinase-1/2,and the phosphoinositide-3-kinase/Akt pathway.MIF also upregulates Toll-like receptor 4 and activates the nuclear factor kappa-B signaling pathway.This review focuses on the structure and function of MIF and its receptors,including the effects of MIF on uveal inflammation,retinal degeneration,optic neuropathy,retinal/choroidal neovascularization,and uveal melanoma.
基金supported by the National Natural Science Foundation of China,No.82104795 (to RH)。
文摘Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury.
基金jointly supported by the National Key R&D Program of China(Grant No.2022YFC3002801)the National Natural Science Foundation of China Grants(Grant Nos.42192563,42120104001)+1 种基金the National Natural Science Foundation of China for Youth(Grant No.42205191)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain seldom explored.First,an event-oriented drought chronology with detailed spatiotemporal evolutions is urgently required.Second,the complex migration patterns and diversity of synchronous temperature extremes need to be quantitatively investigated.Accordingly,the main achievements of our investigation are as follows.We produced an event-oriented set of extreme meteorological droughts over China through the application of a newly developed 3D DBSCAN-based detection method(deposited on https://doi.org/10.25452/figshare.plus.25512334),which was verified with a historical atlas and monographs on a case-by-case basis.In addition,distinctive migration patterns(i.e.,stationary/propagation types)are identified and ranked,considering the differences in latitudinal zones and coastal/inland locations.We also analyze the diversity of synchronous temperature extremes(e.g.,hotness and coldness).Notably,an increasing trend in hot droughts occurred over China since the late 1990s,predominantly appearing to the south of 30°N and north of 40°N.All drought events and synchronous temperature extremes are ranked using a comprehensive magnitude index,with the 2022 summer-autumn Yangtze River hot drought being the hottest.Furthermore,Liang-Kleeman information flow-based causality analysis emphasizes key areas where the PDO and AMO influenced decadal variations in coverages of droughts and temperature extremes.We believe that the achievements in this study may offer new insights into sequential mechanism exploration and prediction-related issues.
基金supported by the National Natural Science Foundation of China(32101236,32270518)National Key R&D Program of China(2022YFF0802400).
文摘Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing it with temperate birds can enhance our understanding of bird migration behaviour and its underlying mecha-nisms.In this study,we explored the migration behaviour of a breeding population of the Barn Swallow(Hirundo rustica)in Zhanjiang,southern China,a region located in the northern tropics,using light-level geolocators.From 2021 to 2023,we deployed geolocators on 92 breeding swallows and retrieved geolocators successfully from 23 individuals.These swallows all exhibited migratory behaviour,and wintering on various islands in Southeast Asia.They displayed sex differences in their wintering locations.All males concentrated in Borneo,while females primarily chose Borneo but also dispersed to the Philippines,South China Sea,and Vietnam for wintering.The studied swallow population adopted a seasonal migration pattern of“indirect in autumn,direct in spring”,bypassing the ecological barrier of the South China Sea in autumn and tending to directly cross it in spring migration.Moreover,the distance and duration of autumn migration was significantly longer than those of the spring migration.Compared to temperate Barn Swallows,the Barn Swallow population breeding in Zhanjiang adopts a pattern of“intra-tropical migration”and initiates autumn migration earlier.The formation of their migration pattern may be limited by ecological and physiological factors.
基金supported by the National Natural Science Foundation of China(Grant No.52078034).
文摘During the highway construction,a large number of spoil areas will be generated while a large amount of waste slag and soil could not be rationally utilized.Besides,the vegetation recovery is slow in the spoil areas due to the soil depletion.Aiming at recycling the solid waste,the sieved engineering waste slag with local red clay and corn straw biochar was supplied to solve the problem of insufficient nutrients in engineering waste slag and soil.In addition,planting experiments of alfalfa(Medicago sativa L.)and Amorpha fruticosa L.combined with physical and chemical experiments were carried out to prove the feasibility of the novel improved substrate for the reclamation of spoil areas.The results show that the substrate's improvement effect is mainly affected by the soil to slag ratio and the biochar content.The improvement effect of soil matrix in highway spoil area decreases with the increase of the waste slag content,especially when the soil-slag ratio is less than 3,and the promotion of plants is limited.On the contrary,the improvement effect is proportional to the biochar content(3%-8%).But it is noted that the Cu and Pb in the soil will exceed the clean limit corresponding to the Nemero soil pollution index level when the biochar content is 8%.Therefore,it is recommended that the soil-slag ratio should be≥3,and the biochar content should reach 3%-5%.This research provides experimental basis and technical support for utilizing solid waste resources in the reclamation of highway spoil areas.
文摘During the 1950s the Hula wetlands and old lake were drained and the land converted utilization to agriculture and ecotourism. As a result of the drainage, the Peat Soil was exposed to atmospheric oxygen. The geochemical environment was modified from reductive to oxidative and the Nitrogen in it was converted from Ammonium to Nitrate. Intensive migration of Nitrate from the Hula Valley induced a national concern of water quality deterioration in the lake which was dissipated when Nitrogen deficiency was developed in Lake Kinneret. Forty years after drainage the ecosystem structure was renovated (Hula Project, HP) aimed at agricultural management and nutrient migration reduction. The paper examines through evaluation of the ecological data record (1993-2018) the impact of hydrological changes, attributed to the HP implementation on nutrient dynamics within surface waters in the Hula Valley. It is suggested that soil moisture elevation by irrigation in summer reduced Phosphorus and enhanced Nitrate concentrations.
文摘It was a 36-year-old patient, 5th Pregnancy, 5th Delivery, 4 live children, and I deceased, had a consultation in the department for the removal of implants. Questioning revealed that she had had the implant three years ago without medical follow-up. It was in view of the difficulties in extracting the capsule that the chest X-ray and CT scan carried out concluded that the implant had migrated into a branch of the left pulmonary artery. Therapeutic abstention has been the attitude of cardiovascular surgeons.
基金supported by the Natural Science Foundation of Xiamen City(3502Z20227307)the National Natural Science Foundation of China(81472458,82372809)the Special Fund for Public Welfare Research Institutes of Fujian Province(2023R1001001,2023R1001003,2023R1035).
文摘The high mortality rate associated with gastric cancer(GC)has resulted in an urgent need to identify novel therapeutic targets for GC.This study aimed to investigate whether GAIP interacting protein,C terminus 1(GIPC1)represents a therapeutic target and its regulating mechanism in GC.GIPC1 expression was elevated in GC tissues,liver metastasis tissues,and lymph node metastases.GIPC1 knockdown or GIPC1 blocking peptide blocked the platelet-derived growth factor receptor(PDGFR)/PI3K/AKT signaling pathway,and inhibited the proliferation and migration of GC cells.Conversely,GIPC1 overexpression markedly activated the PDGFR/PI3K/AKT signaling pathway,and promoted GC cell proliferation and migration.Furthermore,platelet-derived growth factor subunit BB(PDGF-BB)cytokines and the AKT inhibitor attenuated the effect of differential GIPC1 expression.Moreover,GIPC1 silencing decreased tumor growth and migration in BALB/c nude mice,while GIPC1 overexpression had contrasting effects.Taken together,our findings suggest that GIPC1 functions as an oncogene in GC and plays a central role in regulating cell proliferation and migration via the PDGFR/PI3K/AKT signaling pathway.
基金financially supported by the National Key R&D Program of China (2022YFB4200304)the National Natural Science Foundation of China (52303347)+3 种基金the Fundamental Research Funds for the Central Universities (YJ2021157)the Engineering Featured Team Fund of Sichuan University (2020SCUNG102)open foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University (2022GXYSOF05)the support from the National Natural Science Foundation of China (E30853YM19)
文摘Wide-bandgap(>1.7 eV)perovskites suffer from severe light-induced phase segregation due to high bromine content,causing irreversible damage to devices stability.However,the strategies of suppressing photoinduced phase segregation and related mechanisms have not been fully disclosed.Here,we report a new passivation agent 4-aminotetrahydrothiopyran hydrochloride(4-ATpHCl)with multifunctional groups for the interface treatment of a 1.77-eV wide-bandgap perovskite film.4-ATpH^(+)impeded halogen ion migration by anchoring on the perovskite surface,leading to the inhibition of phase segregation and thus the passivation of defects,which is ascribed to the interaction of 4-ATpH^(+)with perovskite and the formation of low-dimensional perovskites.Finally,the champion device achieved an efficiency of 19.32%with an open-circuit voltage(V_(OC))of 1.314 V and a fill factor of 83.32%.Moreover,4-ATpHCl modified device exhibited significant improved stability as compared with control one.The target device maintained 80%of its initial efficiency after 519 h of maximum power output(MPP)tracking under 1 sun illumination,however,the control device showed a rapid decrease in efficiency after 267 h.Finally,an efficiency of 27.38%of the champion 4-terminal all-perovskite tandem solar cell was achieved by mechanically stacking this wide-bandgap top subcell with a 1.25-eV low-bandgap perovskite bottom subcell.
基金supported by grants from National Natural Science Foundation of China(no.:82174020 and no.:31301137)Shanxi Basic Research Program of China(202103021224378)Shanxi Bethune Hospital Talent Introduction Research Start-up Fund of China(2022RC13)。
文摘Background:The role of Claudin-1 in tongue squamous cell carcinoma(TSCC)metastasis needs further clarification,particularly its impact on cell migration.Herein,our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms.Methods:36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1.Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells.Claudin-1 knockdown cell lines were established using short hairpin RNA transfection.Migration effects were assessed through wound healing assays.Furthermore,the expression of EMTassociated molecules was measured via western blotting.Results:Claudin-1 expression decreased as TSCC malignancy increased.Adenosine monophosphate–activated protein kinase(AMPK)activation led to increased Claudin-1 expression and membrane translocation,inhibiting TSCC cell migration and epithelial–mesenchymal transition(EMT).Conversely,Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation.Conclusions:Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.
基金supported by the Ningxia Hui Autonomous Region key research and development programs(Grant No.2021BEG03084)the National Natural Science Foundation of China(Grant No.31660336).
文摘Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context still unclear.Methods:The colorectal carcinoma cell lines HCT116 and SW620 were exposed to TNF-αfor a period of 24 h to instigate an inflammatory response.Subsequent assessments were conducted to measure the expression of inflammatory cytokines,the activity within the p38 mitogen-activated protein kinase(p38 MAPK)and Phosphoinositide 3-Kinase/AKT Serine/Threonine Kinase pathway(PI3K/AKT)signaling cascades.Transcriptome sequencing and subsequent integrative analysis with the Cancer Genome Atlas(TCGA)program database revealed a significant downregulation of the key factor MAD2L2.Enhancement of MAD2L2 expression was facilitated via lentiviral vector-mediated transfection.The influence of this overexpression on TNF-α-prompted inflammation,intracellular signaling pathways,and the migratory and invasive behaviors of the colorectal cancer cells was then scrutinized.Results:TNF-αtreatment significantly increased the expression of Interleukin-1 beta(IL-1β)and Interleukin-6(IL-6),activated the MAPK p38 and PI3K/AKT signaling pathways,and enhanced cell migration and invasion.A decrease in MAD2L2 expression was observed following TNF-αtreatment.However,overexpression of MAD2L2 reversed the effects of TNF-α,reducing IL-1βand IL-6 levels,attenuating PI3K/AKT pathway activation,and inhibiting cell migration and invasion.Conclusions:Overexpression of MAD2L2 attenuates the pro-inflammatory effects of TNF-α,suggesting that MAD2L2 plays a protective role against TNF-α-induced migration and invasion of colorectal carcinoma cells.Therefore,MAD2L2 holds potential as a therapeutic target in the treatment of colorectal cancer.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0137200)National Natural Science Foundation of China(Grant Nos.52309147 and 52179114).
文摘In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.
基金Counting at GTL funded by the Shenzhen Zhilan FoundationAlashan SEE Ecological Association+1 种基金Beijing Xianfeng FoundationCounting at PXL was funded by the Alashan SEE Chongqing Center
文摘Soaring bird migration often relies on suitable terrain and airflow;therefore,route selection is vital for successful migration.While age and experience have been identified as key factor influencing migration route selection among soaring raptors in the African-Eurasian Flyway,how they shape the migration route of soaring raptors in East Asia is still largely unknown.In this study,we investigated potential variations in the routes and timing in autumn migration of juvenile and older soaring birds,using count data of Greater Spotted Eagles(Clanga clanga)from two coastal sites and two inland sites in China.From 2020 to 2023,we recorded a total of 340 individuals,with the highest site averaging over 90 individuals per autumn,making it one of the world’s top single-season counts and thus a globally important site for this species.We found that 82% and 61% records from coastal sites were juveniles,significantly higher than inland sites(15% and 24%).Juveniles at all four sites exhibited markedly earlier median passage time than non-juveniles,with brief overlapping in their main migration periods.Both coastal sites are located on the tip of peninsulas stretching southwest,requiring long overwater flights if crossing the Bohai Bay or Beibu Gulf,which would be energetically demanding and increase mortality risk.Experienced individuals may have learned to avoid such terrain and subsequent detour,while juveniles are more prone to enter these peninsulas due to lack of experience and opportunities for social learning,or following other raptor species that are more capable of powered flight.Our findings highlight the importance of age and experience in migration route selection of large soaring birds.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090202)the Key Science and Technology Projects of Transportation Industry(Grant No.2021-MS4-104)the National Key Research and Development Program of China(Grant No.2019YFC1509900).
文摘Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.
基金the Talent Cultivation Project of Central Support for Reform and Development Funds for Local Universities in Heilongjiang Provincial Undergraduate Colleges in 2021 and the Social Science Fund Project of Qiqihar Medical College(QYSKL2022-03ZD).
文摘Social anxiety is a common psychological problem among left-behind children(LBC)and has been a popular issue in recent years.Children with higher levels of social anxiety have more emotional and behavioral problems and are prone to negative life events.Although several studies have explored the differences in social anxiety between LBC and non-left-behind children(N-LBC),the findings have not been consistent.In this study,a systematic review and meta-analysis method was used,with 411 papers retrieved on October 01,2023,from Pubmed,Embase,Web of Science,and Chinese databases(CNKI,VIP,and Wanfang)(PROSPERO registry number:CRD42023472463).Twenty-one studies met the research criteria and included 11,254 LBC and 13,096 N-LBC.LBC scored significantly higher for social anxiety([WMD(95%CI):0.35[0.23,0.48],p<0.001])and social avoidance and distress([WMD(95%CI):0.35[0.23,0.48],p<0.001]).Subgroup analyses showed significant differences in effect sizes for the overall proportion of children left behind(p=0.02).In addition,different types of parental migration may influence the social anxiety of LBC,double-parent migration was associated higher social anxiety than father migration(p<0.001).Future research should focus on treatments to decrease social anxiety of left-behind children.These findings suggest that due to the long-term absence of parental migration,LBC are more vulnerable to negative emotional experiences and behaviours such as anxiety,distress,and avoidance during social interaction,especially for those with both parents absent from the home.Future research should focus on treatments to reduce social anxiety in LBC.
基金supported by the Gusu Medical Key Talent Project of Suzhou City of China(GSWS2020005)the New Pharmaceutics and Medical Apparatuses Project of Suzhou City of China(SLJ2021007)+3 种基金the Suzhou City Key Clinical Disease Diagnosis and Treatment Technology Special Project,China(LCZX202129)Wujiang Science and Educational Health Revitalization Fund Project,Suzhou,China(WWK202015)the Scientific Research Project of Suzhou Ninth People’s Hospital,Suzhou,China(YK202008)and Suzhou“Science and Education”Youth Science and Technology Project,Suzhou,China(KJXW2020075).
文摘Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.