期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reinforcement Learning-Based Joint Task Offloading and Migration Schemes Optimization in Mobility-Aware MEC Network 被引量:9
1
作者 Dongyu Wang Xinqiao Tian +1 位作者 Haoran Cui Zhaolin Liu 《China Communications》 SCIE CSCD 2020年第8期31-44,共14页
Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of... Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of the mobility of mobile equipments(MEs), if MEs move among the reach of the small cell networks(SCNs), the offloaded tasks cannot be returned to MEs successfully. As a result, migration incurs additional costs. In this paper, joint task offloading and migration schemes in mobility-aware Mobile Edge Computing(MEC) network based on Reinforcement Learning(RL) are proposed to obtain the maximum system revenue. Firstly, the joint optimization problems of maximizing the total revenue of MEs are put forward, in view of the mobility-aware MEs. Secondly, considering time-varying computation tasks and resource conditions, the mixed integer non-linear programming(MINLP) problem is described as a Markov Decision Process(MDP). Then we propose a novel reinforcement learning-based optimization framework to work out the problem, instead traditional methods. Finally, it is shown that the proposed schemes can obviously raise the total revenue of MEs by giving simulation results. 展开更多
关键词 MEC computation offloading mobility-aware migration scheme Markov decision process reinforcement learning
下载PDF
THE MIGRATION SCHEME BASED ON SCHEMA THEOREM OF PGAs
2
作者 GuanYu XuBaowen 《Journal of Electronics(China)》 2002年第3期315-319,共5页
Genetic Algorithms (GAs) are efficient non-gradient stochastic search methods and Parallel GAs (PGAs) are proposed to overcome the deficiencies of the sequential GAs, such as low speed, aptness to local convergence, e... Genetic Algorithms (GAs) are efficient non-gradient stochastic search methods and Parallel GAs (PGAs) are proposed to overcome the deficiencies of the sequential GAs, such as low speed, aptness to local convergence, etc. However, the tremendous increase in the communication costs accompanied with the parallelization stunts the further improvements of PGAs. This letter takes the decrease of the communication costs as the key to this problem and advances a new Migration Scheme based on Schema Theorem (MSST). MSST distills schemata from the populations and then proportionately disseminates them to other populations, which decreases the total communication cost among the populations and arms the multiple-population model with higher speed and better scalability. 展开更多
关键词 Parallel genetic algorithms migration scheme Multiple-population model Complexity analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部