2-Hydroxycarbazole and 4-hydroxycarbazole are important chemicals with extensive applications in optoelectronic materials and pharmaceutical field.State of the art yield of 2-hydroxycarbazole is~30%and the reaction ti...2-Hydroxycarbazole and 4-hydroxycarbazole are important chemicals with extensive applications in optoelectronic materials and pharmaceutical field.State of the art yield of 2-hydroxycarbazole is~30%and the reaction time is typically in hours or days.Herein,we developed a green route for the continuous and high-throughput synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole via photochemical intramolecular cyclization of 3–hydroxy-2–chloro-diphenylamine using a self-designed millimeter scale photoreactor,which was designed based on sizing-up and numbering-up strategies for a decent liquid holdup(6.8 m L)and fabricated via femtosecond laser engraving technique.The photochemical synthesis was carried out continuously under the illumination of 365 nm UV-LED with dimethyl sulfoxide as solvent and potassium t-butoxide as catalyst.It was found that under optimized conditions a 2-hydroxycarbazole yield of 31.6%and a 4-hydroxycarbazole yield of 11.1%were obtained with a residence time of 1 min.Compared to semibatch operations,the reaction time was shortened by 1–2 orders of magnitude.As a result,a throughput of 11.3 g/day 2-hydroxycarbazole and 4.0 g/day 4-hydroxycarbazole can be achieved from the photoreactor.It was proposed that the short reaction time and high product yield are resulted from higher photon transfer rates and more uniform photon distribution provided by the millimeter scale photoreactor,which enhances the reaction rates and mitigates overreaction.展开更多
A millimeter scale butterfly-shaped reactor was proposed based on sizing-up strategy and fabricated via femtosecond laser engraving. An improvement of mixing performance and residence time distribution was realized by...A millimeter scale butterfly-shaped reactor was proposed based on sizing-up strategy and fabricated via femtosecond laser engraving. An improvement of mixing performance and residence time distribution was realized by means of contraction and expansion of the reaction channel. The liquid holdup was greatly increased through connection of multiple mixing units. Structure optimization of the reactor was carried out by computational fluid dynamics simulation, from which the effect of reactor internals on mixing and the influence of parallel branching structure on heat transfer were discussed. The UV–vis absorption spectroscopy was used to determine the residence time distribution in the reactor, and characteristic parameters such as skewness and dimensionless variance were obtained. Further, a chained stagnant flow model was proposed to precisely describe the trailing phenomenon caused by fluid stagnation and laminar flow in small scale reactors, which enables a better fit for the experimental results of the asymmetric residence time distribution. In addition, the heat transfer performance of the reactor was investigated, and the overall heat transfer coefficient was 110–600 W m^(-2)K-1in the flow rate range of 10–40 m L/min.展开更多
基金funded by the National Natural Science Foundation of China(Nos.21991103,21991104,22008074,22008072)Natural Science Foundation of Shanghai(No.20ZR1415700)China Postdoctoral Science Foundation(Nos.2020M671025,2019TQ0093)。
文摘2-Hydroxycarbazole and 4-hydroxycarbazole are important chemicals with extensive applications in optoelectronic materials and pharmaceutical field.State of the art yield of 2-hydroxycarbazole is~30%and the reaction time is typically in hours or days.Herein,we developed a green route for the continuous and high-throughput synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole via photochemical intramolecular cyclization of 3–hydroxy-2–chloro-diphenylamine using a self-designed millimeter scale photoreactor,which was designed based on sizing-up and numbering-up strategies for a decent liquid holdup(6.8 m L)and fabricated via femtosecond laser engraving technique.The photochemical synthesis was carried out continuously under the illumination of 365 nm UV-LED with dimethyl sulfoxide as solvent and potassium t-butoxide as catalyst.It was found that under optimized conditions a 2-hydroxycarbazole yield of 31.6%and a 4-hydroxycarbazole yield of 11.1%were obtained with a residence time of 1 min.Compared to semibatch operations,the reaction time was shortened by 1–2 orders of magnitude.As a result,a throughput of 11.3 g/day 2-hydroxycarbazole and 4.0 g/day 4-hydroxycarbazole can be achieved from the photoreactor.It was proposed that the short reaction time and high product yield are resulted from higher photon transfer rates and more uniform photon distribution provided by the millimeter scale photoreactor,which enhances the reaction rates and mitigates overreaction.
基金funded by the National Natural Science Foundation of China (Nos. 21991103, 21991104, 22008074, 22008072)Natural Science Foundation of Shanghai (No. 20ZR1415700)China Postdoctoral Science Foundation (Nos. 2020M671025,2019TQ0093)。
文摘A millimeter scale butterfly-shaped reactor was proposed based on sizing-up strategy and fabricated via femtosecond laser engraving. An improvement of mixing performance and residence time distribution was realized by means of contraction and expansion of the reaction channel. The liquid holdup was greatly increased through connection of multiple mixing units. Structure optimization of the reactor was carried out by computational fluid dynamics simulation, from which the effect of reactor internals on mixing and the influence of parallel branching structure on heat transfer were discussed. The UV–vis absorption spectroscopy was used to determine the residence time distribution in the reactor, and characteristic parameters such as skewness and dimensionless variance were obtained. Further, a chained stagnant flow model was proposed to precisely describe the trailing phenomenon caused by fluid stagnation and laminar flow in small scale reactors, which enables a better fit for the experimental results of the asymmetric residence time distribution. In addition, the heat transfer performance of the reactor was investigated, and the overall heat transfer coefficient was 110–600 W m^(-2)K-1in the flow rate range of 10–40 m L/min.