A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ...The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.展开更多
Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previou...Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previous works mainly have focused on the multiplexing-diversity tradeoff or switching between multiplexing and diversity without considering the property of heterogeneous QoS provisioning.In this paper,switching between multiplexing and diversity in MIMO system with the heterogeneous QoS provisioning is studied.Firstly the QoS provisioning for users are classified into two classes:users with real time service requirement and users with non-real time service requirement respectively.Then based on the heterogeneous QoS Provisioning for users,two different switching criterions are proposed,switching based on the Euclidean distance for users with real time service to minimize the probability of symbol error and capacity-based switching criterion for users with non-real time service to maximize the transmission capacity respectively.Finally,numerical simulation results are illustrated to demonstrate the performance of proposed scheme.展开更多
Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with t...Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.展开更多
An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fix...An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.展开更多
Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is t...Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.展开更多
A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geom...A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back.The overall size of the four elements MIMO antenna is 2.24λ×2.24λ(at 27.12GHz).The prototype of four-element MIMOresonator is designed and printed using Rogers RTDuroid 5880 withε_(r)=2.2 and loss tangent=0.0009 and having a thickness of 0.8 mm.It covers dual-band having a fractional bandwidth of 15.7%(27.12-31.34 GHz)and 4.2%(37.21-38.81 GHz)for millimeter-wave applications with a gain of more than 4 dBi at both bands.The proposed antenna analysis in terms ofMIMOdiversity parameters(Envelope Correlation Coefficient(ECC)and Diversity Gain(DG))is also carried out.The experimental result in terms of reflection coefficient,radiation pattern,gain and MIMOdiversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.展开更多
无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进...无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。展开更多
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
基金Supported by the Major State Basic Research Development Program of China(973Program)(No.2011CB-707001,2010CB731903)Changjiang Scholars and Innovative Research Team in University(IRT0954)the National Natural Science Foundation of China(No.60971108,60825104)
文摘The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.
基金Sponsored by the Major Projects of National Science and Technology(Grant No.2009ZX03003-003-01)the National Science Fund Young Scholars(Grant No.61001115)the Natural Science Foundation of Beijing,China(Grant No.4102044)
文摘Multiple-input multiple-output (MIMO) wireless communication systems can significantly improve the spectrum efficiency or transmission reliability through spatial multiplexing or diversity respectively.Most of previous works mainly have focused on the multiplexing-diversity tradeoff or switching between multiplexing and diversity without considering the property of heterogeneous QoS provisioning.In this paper,switching between multiplexing and diversity in MIMO system with the heterogeneous QoS provisioning is studied.Firstly the QoS provisioning for users are classified into two classes:users with real time service requirement and users with non-real time service requirement respectively.Then based on the heterogeneous QoS Provisioning for users,two different switching criterions are proposed,switching based on the Euclidean distance for users with real time service to minimize the probability of symbol error and capacity-based switching criterion for users with non-real time service to maximize the transmission capacity respectively.Finally,numerical simulation results are illustrated to demonstrate the performance of proposed scheme.
文摘Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.
基金The National Natural Science Founda-tion of China ( No 60496316)the National Hi-Tech Re-search and Development Program (863) of China (No2006-AA01Z270)
文摘An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.
文摘Quadrature Spatial Modulation (QSM) is a high spectral efficiency Multiple-Input Multiple Output (MIMO) technique used to improve the spectral efficiency of wireless communication systems. The main concept of QSM is to extend the spatial constellation of the conventional Spatial Modulation (SM) in both the in-phase and quadrature components of the data symbol. In this paper, because QSM-based on Interleaxdng Division Multiplexing (IDM) has not been introduced in the literature as a multiple antenna system, we introduced a novel scheme, called QSM system based on Interleaving Division Multiplexing (QSM-IDM). The antenna sets are also applied to a spreader, before being used to assign an antenna number for information transmission. Analysis and simulations for a flat fading channel show that the proposed QSM-IDM method significantly outperforms the original QSM system with the same data rate, while maintaining a relatively acceptable complexity. The obtained simulation results show that the conducted analysis yields significant improvements for the accuracy of the proposed scheme, with satisfactory complexity.
基金This work is supported by the Moore4Medical Project,funded within ECSEL JU in collaboration with the EU H2020 Framework Programme(H2020/2014-2020)under Grant Agreement H2020-ECSEL-2019-IA-876190Fundacao para a Ciência eTecnologia(ECSEL/0006/2019)This work is also funded by the FCT/MEC through national funds and when applicable co-financed by the ERDF,under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 Project.
文摘A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back.The overall size of the four elements MIMO antenna is 2.24λ×2.24λ(at 27.12GHz).The prototype of four-element MIMOresonator is designed and printed using Rogers RTDuroid 5880 withε_(r)=2.2 and loss tangent=0.0009 and having a thickness of 0.8 mm.It covers dual-band having a fractional bandwidth of 15.7%(27.12-31.34 GHz)and 4.2%(37.21-38.81 GHz)for millimeter-wave applications with a gain of more than 4 dBi at both bands.The proposed antenna analysis in terms ofMIMOdiversity parameters(Envelope Correlation Coefficient(ECC)and Diversity Gain(DG))is also carried out.The experimental result in terms of reflection coefficient,radiation pattern,gain and MIMOdiversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.
文摘无小区大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)都是未来6G的使能技术。无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)技术在进行信息解码的同时收集能量,与无小区大规模MIMO-NOMA优势互补。文中基于SWIPT研究无小区大规模MIMO-NOMA系统中的能量效率问题,通过联合优化功率分配系数和SWIPT的时隙切换(Time Switching,TS)系数,提高系统的能量效率。为了最大化能量效率,采用布谷鸟算法设计功率分配系数。考虑一种特殊情况,将所有终端的TS系数设置相同,进而推导了最佳TS系数的封闭表达式。仿真结果表明,相较于几种已有方案,文中提出的优化方案可以显著提升系统的能量效率。