Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co...Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.展开更多
Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely appl...Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.展开更多
A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can ...A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.展开更多
Converged communication and radar sensing systems have attained increasing attention in recent years.The development of converged radar-data systems is reviewed,with a special focus on millimeter/terahertz systems as ...Converged communication and radar sensing systems have attained increasing attention in recent years.The development of converged radar-data systems is reviewed,with a special focus on millimeter/terahertz systems as a promising trend.Firstly,we present historical development and convergence technology concept for communication-radar systems,and highlight some emerging technologies in this area.We then provide an updated and comprehensive survey of several converged systems operating in different microwave and millimeter frequency bands,by providing some selective typical communication and radar sensing systems.In this part,we also summarize and compare the system performance in terms of maximum range/range resolution for radar mode and Bit Error Rate(BER)/wireless distance for communication mode.In the last section,the convergence of millimeter/terahertz communication-radar system is concluded by analyzing the prospect of millimeter-wave/terahertz technologies in providing ultrafast data rates and high resolution for our smart future.展开更多
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai...The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.展开更多
In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integr...In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting(Tx)and receiving(Rx)arrays independently in a single board.Unlike the traditional symmetric array,the proposed asymmetric array is composed of an 8×8 Tx array arranged in a square shape and an 8+8 Rx array arranged in an L shape.The center-to-center distance between two adjacent elements is 0.54k0 for both the Tx and Rx arrays,where k0 is the free-space wavelength at 27 GHz.The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays.In addition,the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array.The measurement results indicate that the operating frequency band of the proposed array is 24.25–29.50 GHz.An eight-element linear array within the Tx array can achieve a scanning angle ranging from-47°to+47°in both the azimuth and the elevation planes,and the measured scanning range of each eight-element Rx array is–45°to+45°.The measured maximum effective isotropic radiated power(EIRP)of the eight-element Tx array is 43.2 dBm at 28.0 GHz(considering the saturation point).Furthermore,the measured error vector magnitude(EVM)is less than 3%when 64-quadrature amplitude modulation(QAM)waveforms are used.展开更多
In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In...In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.展开更多
This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good resul...This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.展开更多
The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model...The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model.展开更多
The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting ...The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting for all necessary physical effects is proposed and model parameters are extracted, with high accuracy in a broadband frequency range ,via combination of physical formula and fitting optimization. Two baluns were implemented with TSMC's one-poly eight-metal (1P8M) 0.13μm mixed-signal (MS)/RF CMOS process. The S-parameters of these two baluns were measured using a vector network analyzer. The measured results agree well with the modeled parameters up to millimeter-wave frequencies.展开更多
A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The re...A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.展开更多
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金supported by the National Natural Science Foundation of China(No.62171052 and No.61971054)the Fundamental Research Funds for the Central Universities(No.24820232023YQTD01).
文摘Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1506605)Sichuan Provincial Department of Education Scientific research projects(Grant No.16ZB0211)Chengdu University of Information Technology research and development projects(Grant No.CRF201705)。
文摘Millimeter-wave cloud radar(MMCR)provides the capability of detecting the features of micro particles inside clouds and describing the internal microphysical structure of the clouds.Therefore,MMCR has been widely applied in cloud observations.However,due to the influence of non-meteorological factors such as insects,the cloud observations are often contaminated by non-meteorological echoes in the clear air,known as clear-air echoes.It is of great significance to automatically identify the clear-air echoes in order to extract effective meteorological information from the complex weather background.The characteristics of clear-air echoes are studied here by combining data from four devices:an MMCR,a laser-ceilometer,an L-band radiosonde,and an all-sky camera.In addition,a new algorithm,which includes feature extraction,feature selection,and classification,is proposed to achieve the automatic identification of clear-air echoes.The results show that the recognition algorithm is fairly satisfied in both simple and complex weather conditions.The recognition accuracy can reach up to 95.86%for the simple cases when cloud echoes and clear-air echoes are separate,and 88.38%for the complicated cases when low cloud echoes and clear-air echoes are mixed.
文摘A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.
基金supported in part by National Natural Science Foundation of China(NSFC)under Grant No.61771424in part by Natural Science Foundation of Zhejiang Province under Grant No.LZ18F010001.
文摘Converged communication and radar sensing systems have attained increasing attention in recent years.The development of converged radar-data systems is reviewed,with a special focus on millimeter/terahertz systems as a promising trend.Firstly,we present historical development and convergence technology concept for communication-radar systems,and highlight some emerging technologies in this area.We then provide an updated and comprehensive survey of several converged systems operating in different microwave and millimeter frequency bands,by providing some selective typical communication and radar sensing systems.In this part,we also summarize and compare the system performance in terms of maximum range/range resolution for radar mode and Bit Error Rate(BER)/wireless distance for communication mode.In the last section,the convergence of millimeter/terahertz communication-radar system is concluded by analyzing the prospect of millimeter-wave/terahertz technologies in providing ultrafast data rates and high resolution for our smart future.
基金supported by the National Natural Science Foundation of China under Grant 62301119。
文摘The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.
基金supported by the National Key Research and Development Program of China(2020YFB1804900 and 2022YFE0210900)the Fundamental Research Funds for the Central Universities(2242022k60008 and 2242022k30003)+2 种基金the National Natural Science Foundation of China(62301152 and 61627801)the Youth Talent Promotion Foundation of Jiangsu Science and Technology Association(TJ-2023-074)the Startup Research Fund of Southeast University(RF1028623286).
文摘In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting(Tx)and receiving(Rx)arrays independently in a single board.Unlike the traditional symmetric array,the proposed asymmetric array is composed of an 8×8 Tx array arranged in a square shape and an 8+8 Rx array arranged in an L shape.The center-to-center distance between two adjacent elements is 0.54k0 for both the Tx and Rx arrays,where k0 is the free-space wavelength at 27 GHz.The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays.In addition,the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array.The measurement results indicate that the operating frequency band of the proposed array is 24.25–29.50 GHz.An eight-element linear array within the Tx array can achieve a scanning angle ranging from-47°to+47°in both the azimuth and the elevation planes,and the measured scanning range of each eight-element Rx array is–45°to+45°.The measured maximum effective isotropic radiated power(EIRP)of the eight-element Tx array is 43.2 dBm at 28.0 GHz(considering the saturation point).Furthermore,the measured error vector magnitude(EVM)is less than 3%when 64-quadrature amplitude modulation(QAM)waveforms are used.
基金National Natural Science Foundation of China(41575031,41175089)China Postdoctoral Science Foundation(2015M580124)Key Laboratory of Geo-Information Engineering(S18701)
文摘In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.
基金supported by the National Natural Science Foundation of China(62201510,62001091,61801435,61871080,61801435)the Initial Scientific Research Foundation of University of Science and Technology of China(Y030202059018051)+2 种基金Yangtze River Scholar Program,Sichuan Science and Technology Program(2019JDJQ0014)111 Project(B17008)Henan Provincial Department of Science and Technology Research Project(202102210315,212102210029,202102210-137).
文摘This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.
基金Supported by the National Natural Science Foundation of China(41205126)the Discipline Construction and Macroscopic Agricultural Research Project of Anhui Academy of Agricultural Sciences(13A1424)+2 种基金the Fund for Youth Innovation of Anhui Academy of Agricultural Sciences(14B1460)the Innovative Research Team for Agricultural Disaster Risk Analysis in Anhui ProvinceAnhui Academy of Agricultural Sciences(14C1409)~~
文摘The establishment of crop yield estimating model based on microwave and optical satellite images can conduct the mutual verification of the accuracy of the reported crop yield and the precision of the estimating model. With Shou County and Huaiyuan County of Anhui Province as the experimental fields of winter wheat producing areas, the linear winter wheat yield estimating models were established by adopting backscattering coefficient and Normalized Difference Vegetation Index(NDVI) based on images from the synthetic aperture radar(SAR)—RDARSAT-2 and HJ satellite photographed in mid-April and early May, 2014, and then comparisons were conducted on the accuracy of the yield estimating models. The accuracies of the yield estimating models established using co-polarized(HH) and cross-polarized(HV) modes of SAR in Jiangou Town, Shou County were 68.37% and 74.01%, respectively, while the accuracies in Longkang Town, Huaiyuan County were 63.10%and 69.10%, respectively. Accuracies of yield estimating models established by HJ satellite data were 69.52% and 66.43% in Shou County and Huaiyuan County, respectively. Accuracies of winter yield estimating model based on HJ satellite data and that based on SAR were closed, and the yield difference of winter wheat in the lodging region was analyzed in detail. The model results laid the foundation and accumulated experience for the verification, parameters correction and promotion of the winter wheat yield estimating model.
文摘The implementation of broadband monolithic baluns based on CMOS technology is investigated. The configuration and parameterized layout are analyzed. Then,a wide-band lumped element equivalent circuit model accounting for all necessary physical effects is proposed and model parameters are extracted, with high accuracy in a broadband frequency range ,via combination of physical formula and fitting optimization. Two baluns were implemented with TSMC's one-poly eight-metal (1P8M) 0.13μm mixed-signal (MS)/RF CMOS process. The S-parameters of these two baluns were measured using a vector network analyzer. The measured results agree well with the modeled parameters up to millimeter-wave frequencies.
文摘A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.