A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research t...A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.展开更多
This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors ...This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.展开更多
In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the ...In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.展开更多
文摘A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
基金supported by the Council of Scientific and Industrial Research(CSIR),New Delhi,India under Grant No.09/013(0474)/2012-EMR-1
文摘This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.
文摘In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
基金supported by National Natural Science Foundation of China(Grant No.11271221)
文摘In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.