期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cathodoluminescence and Trace Element Composition of Scheelite from the Middle-Lower Yangtze River Metallogenic Belt(MLYB): Implications for Mineralization and Exploration 被引量:1
1
作者 NIE Liqing ZHOU Taofa +2 位作者 CHEN Xuefeng WANG Fangyue XIAO Xin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1977-1996,共20页
The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovere... The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovered in the MLYB during recent decades.The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood.We investigate four sets of scheelite samples from tungsten,iron and copper deposits,using CL imaging and LA-ICP-MS techniques to reveal internal zonation patterns and trace element compositions.The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies.The oxygen fugacity of ore-forming fluid increased in Donggushan,while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan,Guilinzheng and Gaojiabang.The scheelites from the Donggushan,Ruanjiawan,Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE,with Nb/La ratios ranging from 1.217 to 52.455,indicating that the four tungsten deposits are enriched in the volatile fluorine.A plot of(La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type,porphyry and skarn tungsten deposits.This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites. 展开更多
关键词 SCHEELITE trace elements tungsten mineralization middle-lower yangtze river Metallogenic Belt
下载PDF
Mineral Deposit Model of Cu-Fe-Au Skarn System in the Edongnan Region, Eastern China
2
作者 XIE Guiqing MAO Jingwen +4 位作者 ZHU Qiaoqiao HAN Yingxiao LI Wei DUAN Chao YE Hui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1797-1807,共11页
Cu and Fe skarns are the world's most abundant and largest skarn type deposits,especially in China,and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focus... Cu and Fe skarns are the world's most abundant and largest skarn type deposits,especially in China,and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu-Fe-Au skarn systems.Three types of Au-rich deposits are recognized in the Edongnan region,Middle-Lower Yangtze River metallogenic belt:~140 Ma Cu-Au and Au-Cu skarn deposits and distal Au-Tl deposits.137-148 Ma Cu-Fe and 130-133 Ma Fe skarn deposits are recognized in the Edongnan region.The Cu-Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits,and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu-Fe skarn deposits.The carbonate-hosted Au-Tl deposits in the Edongnan region are interpreted as distal products of Cu-Au skarn mineralization.A new schematic mineral deposit model of the Cu-Fe-Au skarn system is proposed to illustrate the relationship between the Cu-Fe-Au skarn mineralization,the evaporitic sedimentary rocks,and distal Au-Tl deposits.This model has important implications for the exploration for carbonate-hosted Au-Tl deposits in the more distal parts of Cu-Au skarn systems,and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB,and possibly elsewhere. 展开更多
关键词 mineral deposit model exploration Cu-Fe-Au skarn system middle-lower yangtze river metallogenic belt
下载PDF
High-resolution 3D crustal S-wave velocity structure of the MiddleLower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting 被引量:22
3
作者 Song LUO Huajian YAO +4 位作者 Qiusheng LI Weitao WANG Kesong WAN Yafeng MENG Bin LIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第9期1361-1378,共18页
The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geody... The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geodynamic setting in this region. Using ambient seismic noise from 107 permanent and 82 portable stations in the MLYMB and the adjacent area,we present a new high-resolution 3D S-wave velocity model of this region. We first extract 5–50 s Rayleigh wave phase velocity dispersion data by calculating ambient noise cross-correlation functions(CFs) and then use the surface wave direct inversion method to invert the mixed path travel times for the 3D S-wave velocity structure. Checkerboard tests show that the horizontal resolution of the 3D S-wave velocity model is approximately 0.5°–1.0° and that the vertical resolution decreases with increasing noise and depth. Our high-resolution 3D S-wave velocity model reveals:(1) AV-shaped high-velocity zone(HVZ) is located in the lower crust and the uppermost mantle in the study region. The western branch of the HVZ passes through the Jianghan Basin,the Qinling-Dabie orogenic belt and the Nanxiang Basin. The eastern branch, which almost completely covers the main body of the MLYMB, is located near the Tanlu Fault. The low-velocity anomalies between the western and eastern branches are located in the area of the Qinling-Dabie orogenic belt.(2) High-velocity uplifts(HVUs) are common in the crust of the MLYMB,especially in the areas near the Tanlu Fault, the Changjiang Fault and the Yangxin-Changzhou Fault. The intensities of the HVUs gradually weaken from west to east. The V-shaped HVZ in the lower crust and uppermost mantle and the HVUs in the middle and lower crust likely represent cooled mantle intrusive rocks. During the Yanshanian period, fault systems formed in the MLYMB due to the convergence between the South China Plate and the North China Plate, the multiple-direction drifting of the PaleoPacific Plate and its subduction beneath the Eurasian Plate. The dehydration of the cold oceanic crust led to partial melting in the upper mantle. Temperature differences caused strong convection of the upper mantle material that underplated the lower crust and rose to near the surface along the deep fault systems. After mixing with the crustal materials, mineralization processes, such as assimilation and fractional crystallization, occurred in the MLYMB. 展开更多
关键词 middle-lower yangtze river METALLOGENIC Belt Ambient noise Surface wave CRUSTAL structure mineralization dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部