Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce...Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass.展开更多
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ...Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.展开更多
By adding small amount of TiO2, aluminum slag could be used to synthesize cor- dierite. α-Al2O3, TiO2 and dehydrated talc could generate solid solution to accelerate the solid-state reaction to form cordierite. The e...By adding small amount of TiO2, aluminum slag could be used to synthesize cor- dierite. α-Al2O3, TiO2 and dehydrated talc could generate solid solution to accelerate the solid-state reaction to form cordierite. The experimental results show that the content of cordierite increases with the increase of TiO2 added. 3.0% of TiO2 is determined to be the best amount, because all crystalline substances are converted into cordierite at this content. Philips X’pert plus software analysis shows that when the content of TiO2 is from 0 to 1.0%, cordierite has the same hexagonal structure as the single crystal and the lattice parameters change slightly; when the content of TiO2 is from 1.0 to 2.0%, the cordierite still keeps hexagonal structure but the lattice parameters change greatly; when the content of TiO2 is from 2.0 to 3.5%, the cordierite is converted from hexagonal into rhombic and the lattice parameters change accordingly.展开更多
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are ...A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials, and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca. 240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.展开更多
Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable...Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable.A well-integrated mining strategy that focuses on both economic and physical resource depletion is vital to the management of non-renewable mineral resources.In this paper,a conceptual framework that maximizes the benefits of mining and processing mineralized waste rocks as future resource is proposed.Governmental policy and technical reforms that ensure mining companies incorporate the proposed mineralized waste rocks management framework in their long-term strategic mine plans have been recommended.展开更多
The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer ca...The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer can make a-cristobalite convertto a-tridymite whose bulk effect is small. The crystal structure and its amount were investigated with XRD technique. The influence of different amounts of MnO2 on thecrystal structure and polycrystal transformation, and that of crystal structure on theproperties of kiln furniture were studied. The best proportion of MnO2 added was determined to be 2.0%.展开更多
The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (cont...The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.展开更多
The presence of insufficient bone volume affects the implant healing and success.The aim of this study was to evaluate osteogenic capacity of dental pulp stem cells(DPSCs) on micro-arc oxidation(MAO) titanium surface....The presence of insufficient bone volume affects the implant healing and success.The aim of this study was to evaluate osteogenic capacity of dental pulp stem cells(DPSCs) on micro-arc oxidation(MAO) titanium surface.DPSCs were challenged at MAO and smooth titanium surface separately for different durations,and the bone marrow mesenchymal stem cells(BMSCs) served as the positive controls.The osteogenic capacity of DPSCs on MAO titanium surface was assessed by using scanning electron microscopy,energy dispersive spectroscopy,biochemical tests and real-time quantitative PCR.Data showed that DPSCs differentiated into osteoblasts and expressed bone morphogenetic genes on MAO titanium surface.The results of this study revealed that DPSCs had good potential to generate mineralized tissue on MAO titanium plates.The differential potential of DPSCs may be regulated by MAO titanium surface.The osteogenesis potential of DPSCs on the MAO titanium was similar with BMSCs.展开更多
The order Diptera(Insecta)is one of animal groups most successful in the colonization of mineralized shallow aquatic and semiaquatic environments.At the same time,the taxonomic composition of Diptera,their role in
People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running wate...People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running water, and therefore it is good for the digestion, promotion of metabolism, prevention of cardiovascular diseases and osteoporosis, and promotion of Children growth. It has become a favourite drink for many people.展开更多
Although Jordan is a country with very limited water resources, the country is rich in its thermal mineralized water possessing curative properties, historically used for the therapy of a variety of ailments. Due to t...Although Jordan is a country with very limited water resources, the country is rich in its thermal mineralized water possessing curative properties, historically used for the therapy of a variety of ailments. Due to the country’s increasing water demand resulting from population growth, urbanization, and industrialization, extractions from the groundwater sources feeding the thermal mineralized springs has started to affect negatively the discharged quantities from the springs. In addition, urbanization, mining activities, over-exploited groundwater resources in general and severe drop in the level of the Dead Sea are leading to declining discharge of springs in general, and thermal mineralized in special, deteriorating water quality and contamination by human activities. In this article, the current quantitative and qualitative situation of the thermal mineralized springs is given and the threats to their discharges and quantities are discussed. In addition, some water policy changes and measures are suggested to conserve these therapeutic waters for the use of generations to come and to alleviate their depletion and quality deterioration on the social and economic state of Jordan.展开更多
A geophysical investigation of subsurface structures using the Syscal Junior 48 resistivity-meter was conducted in Ngoura subdivision (East Cameroon) following a combined geoelectrical direct current (DC) approach inv...A geophysical investigation of subsurface structures using the Syscal Junior 48 resistivity-meter was conducted in Ngoura subdivision (East Cameroon) following a combined geoelectrical direct current (DC) approach involving Resistivity and IP methods. This investigation was allowed to collect data on forty-five (45) profiling lines at three acquisition levels (AB = 100 m, MN = 10 m;AB = 200 m, MN = 20 m and AB = 500 m, MN = 50 m) and two electric panels L1 and L4, using the Schlumberger array. Processing, modeling and interpretation of data collected using the Winsev, Res2Dinv and Surfer software helped in highlighting a conductive and strongly mineralized discontinuity in granite formations, which lined up with the NE-SW Kadei tectonic line. It extends beyond 100 m depth over an average width of 600 m. The mineralization associated with this discontinuity is identified by a high concentration of disseminated metalliferous minerals in quartz or pegmatite veins. The mining reconnaissance works in the study area and those of several authors have characterized this anomaly to a lode gold quartz or large pegmatite. The results of this study correlate with geological and tectonic data for the region marked by NE-SW Kadei tectonic line. Therefore, they confirm the reliability of a geoelectrical DC investigation method combining Resistivity and IP to the identification of ore bodies.展开更多
Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practic...Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practice.However,considering the large quantities of contaminated soil,it is still a huge challenge to design low-cost amendments with strong and long-term immobilization ability.Layered double hydroxides(LDHs)have drawn tremendous attention in fundamental research and practical application because of their unique properties.Moreover,owing to its super-stable mineralization effect to heavy metal ions,LDHs have exhibited great potential in the field of soil remediation.In this work,we mainly focused on the scale production strategy of LDHs with low-cost,and its application in soil remediation.Besides,several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.We hope that this mini-review could shed light on the sustainable development of LDHs as amendment for heavy metals in future research directions.展开更多
Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan...Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan Formation. This work described the morphology, structures, main ore types and geochemical characteristics of this ore body in detail, and discussed the ore-forming material source, occurrence state of lithium and the formation mechanism of lithium ores to clarify the prospecting marks. In the further exploration, comprehensive evaluation of the lithium resources of known bauxite ore bodies in central Yunnan Province should be strengthened, and the exploration of hidden lithium ore bodies should be intensified in order to discover more large and super-large lithium orebodies, which will fill the gap of the national demand for lithium resources, and promote the national defense construction and new energy industry development.展开更多
Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nan...Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering.展开更多
Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral ...Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral and maxillofacial bone defects but is still unsatisfied in the treatment of long bone defects.Here,we successfully fabricated a bilayer mineralized collagen/collagen(MC/Col)-GBR membrane with excellent osteoinductive and barrier function by coating the MC particles prepared via in situ biomimetic mineralization process on one side of a sheet-like pure collagen layer.The aim of the present study was to investigate the physicochemical properties and biological functions of the MC/Col film,and to further evaluate its bone regeneration efficiency in large bone defect repair.Fouriertransform infrared spectra and X-ray diffraction patterns confirmed the presence of both hydroxyapatite and collagen phase in the MC/Col film,as well as the chemical interaction between them.stereo microscope,scanning electron microscopy and atomic force microscope showed the uniform distribution of MC particles in the MC/Col film,resulting in a rougher surface compared to the pure Col film.The quantitative analysis of surface contact angle,light transmittance and tensile strength demonstrated that the MC/Col film have better hydrophilicity,mechanical properties,light-barrier properties,respectively.In vitro macrophage co-culture experiments showed that the MC/Col film can effectively inhibit macrophage proliferation and fusion,reducing fibrous capsule formation.In vivo bone repair assessment of a rabbit critical segmental radial defect proved that the MC/Col film performed better than other groups in promoting bone repair and regeneration due to their unique dual osteoinductive/barrier function.These findings provided evidence that MC/Col film has a great clinical potential for effective bone defect repair.展开更多
Lung cancer is one of the most common malignant tumors with the fastest increase in the incidence rate and mortality.Even after maximum tumor resection assistance with a radiotherapy and chemotherapy combination,the r...Lung cancer is one of the most common malignant tumors with the fastest increase in the incidence rate and mortality.Even after maximum tumor resection assistance with a radiotherapy and chemotherapy combination,the recurrence of non-small cell lung cancer is still inevitable.In addition,low targeting efficiency and poor permeability of drug delivery systems strongly affect the therapeutic efficiency of anti-cancer drugs on non-small cell lung cancer.Here we designed a gemcitabine(GEM)loaded arginineglycine-aspartic acid-cysteine(RGDc)-modified gold mineralization“hybrid nanozyme bomb”(RGTG)to overcome those obstacles.RGDc modification improved the active targeting of liposomes to the tumor tissues with the second near-infrared(NIR-Ⅱ)-triggered gold-shell disruption and GEM release.The collapsed gold-shell particles with a smaller size could penetrate the tumor solid barrier and act as photothermal therapy(PTT)agents to improve PTT therapy and starvation therapy via generating gluconic acid and reactive oxygen species(ROS).Moreover,the resting reversal effect of gold particles on tumor fibroblasts can achieve accelerating tumor penetration of gold particles and GEM.Compared to monotherapy,RGTG showed significant improvement in tumor inhibition,with a tumor volume reduction of 83%compared to the control group,which provides a promising tumor treatment platform for non-small cell lung cancer(NSCLC).展开更多
Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samp...Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samples to the killing fluid for seven days,corresponding to the average duration of well workovers in the oilfields in Perm Krai,Russia.Our findings indicate that critical factors influencing the interactions between rocks and the killing fluid include the chemical composition of the killing fluid,the mineralogical composition of the carbonate rocks,reservoir pressure and temperature,and the contact time.Petrophysical analyses using multi-scale X-ray computed tomography,field emission scanning electron microscopy,and X-ray diffraction were conducted on samples both before and after the well killing simulation.The experiments were performed using real samples of cores,crude oil,and the killing fluid.The results from this study indicate that low-mineralized water(practically fresh water)is a carbonate rock solvent.Such water causes the dissolution of rock components,the formation of new calcite crystals and amoeba-like secretions,and the migration of small particles(clay,quartz,and carbonates).The formation of deep channels was also recorded.The assessment reveals that the change in the pH of the killing fluid indicates that the observed mineral reactions were caused by carbonate dissolution.These combined phenomena led to a decrease in the total number of voids in the core samples,which was 25%on average,predominantly among voids measuring between 45 and 70μm in size.The change in the pore distribution in the bulk of the samples resulted in decreases in porosity of 1.8%and permeability of 67.0%in the studied core samples.The results from this study indicate the unsuitability of low-mineralized water as a well killing fluid in carbonate reservoirs.The composition of the killing fluid should be optimized,for example,in terms of the ionic composition of water,which we intend to investigate in future research.展开更多
At this stage,bone defects caused by trauma,infection,tumor,or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation,but this treatment method has limited sources,potential d...At this stage,bone defects caused by trauma,infection,tumor,or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation,but this treatment method has limited sources,potential disease transmission and other problems.Ideal bone-graft materials remain continuously explored,and bone defect reconstruction remains a significant challenge.Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials.Magnesium,strontium,zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth,and bone repair and reconstruction.This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components,such as magnesium,strontium and zinc.展开更多
A new nerve guidance conduits(NGCs)named MC@Col containing Type I collagen(Col)and mineralized collagen(MC)was developed,enhancing mechanical and degradation behavior.The physicochemical properties,the mechanical prop...A new nerve guidance conduits(NGCs)named MC@Col containing Type I collagen(Col)and mineralized collagen(MC)was developed,enhancing mechanical and degradation behavior.The physicochemical properties,the mechanical properties and in vitro degradation behavior were all evaluated.The adhesion and proliferation of Schwann cells(SCs)were observed.In the in vivo experiment,MC@Col NGC and other conduits including Col,chitosan(CST)and polycaprolactone(PCL)conduit were implanted to repair a 10-mm-long Sprague-Dawley rat’s sciatic nerve defect.Histological analyses,morphological analyses,electrophysiological analyses and further gait analyses were all evaluated after implantation in 12 weeks.The strength and degradation performance of the MC@Col NGC were improved by the addition of MC in comparison with pure Col NGC.In vitro cytocompatibility evaluation revealed that the SCs had good viability,attachment and proliferation in the MC@Col.In in vivo results,the regenerative outcomes of MC@Col NGC were close to those by an autologous nerve graft in some respects,but superior to those by Col,CST and PCL conduits.The MC@Col NGC exhibited good mechanical performance as well as biocompatibility to bridge nerve gap and guide nerve regeneration,thus showing great promising potential as a new type of conduit in clinical applications.展开更多
基金the Guangdong Basic and Applied Basic Research Foundation(2023B1515040013)National Natural Science Foundation of China(22108088)State Key Laboratory of Pulp and Paper Engineering(202105)for the financial support of this work.
文摘Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass.
基金supported by the National Natural Science Foundation of China(Grant no:12272253)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant no:2021SX-AT008,2021SX-AT009).
文摘Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.
基金This project was supported by the 863 Project (2003AA322020)
文摘By adding small amount of TiO2, aluminum slag could be used to synthesize cor- dierite. α-Al2O3, TiO2 and dehydrated talc could generate solid solution to accelerate the solid-state reaction to form cordierite. The experimental results show that the content of cordierite increases with the increase of TiO2 added. 3.0% of TiO2 is determined to be the best amount, because all crystalline substances are converted into cordierite at this content. Philips X’pert plus software analysis shows that when the content of TiO2 is from 0 to 1.0%, cordierite has the same hexagonal structure as the single crystal and the lattice parameters change slightly; when the content of TiO2 is from 1.0 to 2.0%, the cordierite still keeps hexagonal structure but the lattice parameters change greatly; when the content of TiO2 is from 2.0 to 3.5%, the cordierite is converted from hexagonal into rhombic and the lattice parameters change accordingly.
基金Shaanxi Mineral Resources and Geological Survey (Grant no. 214027160195)a project on magmatism and W-Mo mineralization in the mineralized areas of western Zhen’anShaanxi Mineral Resources and Geological Survey (Grant no. 61201506280)a project that combined exploration and technical approaches in the mineralized areas of the Qinling mineralized belt。
文摘A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials, and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca. 240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.
基金supported by the Ontario Trillium Scholarship ProgramIAMGOLD Corporation and Natural Sciences and Engineering Research Council of Canada (DG#: RGPIN-2016-05707 CRD#: CRDPJ 500546-16)
文摘Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable.A well-integrated mining strategy that focuses on both economic and physical resource depletion is vital to the management of non-renewable mineral resources.In this paper,a conceptual framework that maximizes the benefits of mining and processing mineralized waste rocks as future resource is proposed.Governmental policy and technical reforms that ensure mining companies incorporate the proposed mineralized waste rocks management framework in their long-term strategic mine plans have been recommended.
文摘The properties of SiC kiln furniture bonded with fine silicon powderare related to the bonder’s crystal structure. At high temperature, it will crystallize ina-cristobalite with great bulk effect. MnO2 mineralizer can make a-cristobalite convertto a-tridymite whose bulk effect is small. The crystal structure and its amount were investigated with XRD technique. The influence of different amounts of MnO2 on thecrystal structure and polycrystal transformation, and that of crystal structure on theproperties of kiln furniture were studied. The best proportion of MnO2 added was determined to be 2.0%.
文摘The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.
基金supported by the Innovation Fund of Huazhong University of Science and Technology,Wuhan,P.R. China (No.2011JC018)
文摘The presence of insufficient bone volume affects the implant healing and success.The aim of this study was to evaluate osteogenic capacity of dental pulp stem cells(DPSCs) on micro-arc oxidation(MAO) titanium surface.DPSCs were challenged at MAO and smooth titanium surface separately for different durations,and the bone marrow mesenchymal stem cells(BMSCs) served as the positive controls.The osteogenic capacity of DPSCs on MAO titanium surface was assessed by using scanning electron microscopy,energy dispersive spectroscopy,biochemical tests and real-time quantitative PCR.Data showed that DPSCs differentiated into osteoblasts and expressed bone morphogenetic genes on MAO titanium surface.The results of this study revealed that DPSCs had good potential to generate mineralized tissue on MAO titanium plates.The differential potential of DPSCs may be regulated by MAO titanium surface.The osteogenesis potential of DPSCs on the MAO titanium was similar with BMSCs.
基金supported by the Russian Foundation for Basic Research (grant no. 14-04-01139)supported by a travel grant from the Organizing Committee
文摘The order Diptera(Insecta)is one of animal groups most successful in the colonization of mineralized shallow aquatic and semiaquatic environments.At the same time,the taxonomic composition of Diptera,their role in
文摘People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running water, and therefore it is good for the digestion, promotion of metabolism, prevention of cardiovascular diseases and osteoporosis, and promotion of Children growth. It has become a favourite drink for many people.
文摘Although Jordan is a country with very limited water resources, the country is rich in its thermal mineralized water possessing curative properties, historically used for the therapy of a variety of ailments. Due to the country’s increasing water demand resulting from population growth, urbanization, and industrialization, extractions from the groundwater sources feeding the thermal mineralized springs has started to affect negatively the discharged quantities from the springs. In addition, urbanization, mining activities, over-exploited groundwater resources in general and severe drop in the level of the Dead Sea are leading to declining discharge of springs in general, and thermal mineralized in special, deteriorating water quality and contamination by human activities. In this article, the current quantitative and qualitative situation of the thermal mineralized springs is given and the threats to their discharges and quantities are discussed. In addition, some water policy changes and measures are suggested to conserve these therapeutic waters for the use of generations to come and to alleviate their depletion and quality deterioration on the social and economic state of Jordan.
文摘A geophysical investigation of subsurface structures using the Syscal Junior 48 resistivity-meter was conducted in Ngoura subdivision (East Cameroon) following a combined geoelectrical direct current (DC) approach involving Resistivity and IP methods. This investigation was allowed to collect data on forty-five (45) profiling lines at three acquisition levels (AB = 100 m, MN = 10 m;AB = 200 m, MN = 20 m and AB = 500 m, MN = 50 m) and two electric panels L1 and L4, using the Schlumberger array. Processing, modeling and interpretation of data collected using the Winsev, Res2Dinv and Surfer software helped in highlighting a conductive and strongly mineralized discontinuity in granite formations, which lined up with the NE-SW Kadei tectonic line. It extends beyond 100 m depth over an average width of 600 m. The mineralization associated with this discontinuity is identified by a high concentration of disseminated metalliferous minerals in quartz or pegmatite veins. The mining reconnaissance works in the study area and those of several authors have characterized this anomaly to a lode gold quartz or large pegmatite. The results of this study correlate with geological and tectonic data for the region marked by NE-SW Kadei tectonic line. Therefore, they confirm the reliability of a geoelectrical DC investigation method combining Resistivity and IP to the identification of ore bodies.
基金supported by the National Natural Science Foundation of China(21978023)the Fundamental Research Funds for the Central Universities(XK1803-05)+1 种基金the Inno-vative Achievement Commercialization Service-Platform of Indus-trial Catalysis(2019-00900-2-1)the National Basic Research Program of China(2014CB932104)。
文摘Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practice.However,considering the large quantities of contaminated soil,it is still a huge challenge to design low-cost amendments with strong and long-term immobilization ability.Layered double hydroxides(LDHs)have drawn tremendous attention in fundamental research and practical application because of their unique properties.Moreover,owing to its super-stable mineralization effect to heavy metal ions,LDHs have exhibited great potential in the field of soil remediation.In this work,we mainly focused on the scale production strategy of LDHs with low-cost,and its application in soil remediation.Besides,several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.We hope that this mini-review could shed light on the sustainable development of LDHs as amendment for heavy metals in future research directions.
文摘Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan Formation. This work described the morphology, structures, main ore types and geochemical characteristics of this ore body in detail, and discussed the ore-forming material source, occurrence state of lithium and the formation mechanism of lithium ores to clarify the prospecting marks. In the further exploration, comprehensive evaluation of the lithium resources of known bauxite ore bodies in central Yunnan Province should be strengthened, and the exploration of hidden lithium ore bodies should be intensified in order to discover more large and super-large lithium orebodies, which will fill the gap of the national demand for lithium resources, and promote the national defense construction and new energy industry development.
基金"111 Project"Biomedical Textile Materials Science and Technology,China(No.B07024)National Natural Science Foundations of China(No.31070871,No.31271035)+2 种基金National Medical Research Council,China(No.NMRC/1151/2008)Technologies Bureau of Jiaxing City,China(No.MTC2012-006,No.2011A Y1026)Science and Technology Agency of Zhejiang Province,China(No.2012R10012-09)
文摘Composite nanofibrous mats consisting of poly( L-lactideco-ε-caprolactone)( PLCL) and collagen type I( COL) were fabricated by electrospinning,and ten times simulated body fluid(10SBF) were employed to mineralize nanofibrous mats. Ballshaped hydroxyapatite( HA) was deposited on the surface of nanofibrous mats in 1. 5 h at room temperature. Human fetal osteoblasts( hFob) were seeded to investigate their proliferation and differentiation on mineralized composite nanofibrous mats. The results showed that hFob grew well on mineralized composite nanofibrous mats and alkaline phosphatase( ALP) activity of hFob on mineralized composite nanofibrous mats at 14 d was much higher than that on untreated nanofibrous mats. Moreover,the expression of osteocalcin of cells on mineralized composite nanofibrous mats was also much higher than those on untreated nanofibrous mats at 7 d and 14 d. This mineralized composite nanofibrous mats may have a great potential for bone tissue engineering.
基金supported by the Department of Science and Technology of Sichuan Province(23ZDYF2641)Health Commission of Sichuan Province(2023-118)+2 种基金Chengdu Science and Technology Program(2021-YF08-00107-GX)Department of Science and Technology of Chengdu(2023-GH02-00075-HZ)the Fundamental Research Funds for the Central Universities(20826041G4189).
文摘Bone regeneration for large,critical-sized bone defects remains a clinical challenge nowadays.Guided bone regeneration(GBR)is a promising technique for the repair of multiple bone defects,which is widely used in oral and maxillofacial bone defects but is still unsatisfied in the treatment of long bone defects.Here,we successfully fabricated a bilayer mineralized collagen/collagen(MC/Col)-GBR membrane with excellent osteoinductive and barrier function by coating the MC particles prepared via in situ biomimetic mineralization process on one side of a sheet-like pure collagen layer.The aim of the present study was to investigate the physicochemical properties and biological functions of the MC/Col film,and to further evaluate its bone regeneration efficiency in large bone defect repair.Fouriertransform infrared spectra and X-ray diffraction patterns confirmed the presence of both hydroxyapatite and collagen phase in the MC/Col film,as well as the chemical interaction between them.stereo microscope,scanning electron microscopy and atomic force microscope showed the uniform distribution of MC particles in the MC/Col film,resulting in a rougher surface compared to the pure Col film.The quantitative analysis of surface contact angle,light transmittance and tensile strength demonstrated that the MC/Col film have better hydrophilicity,mechanical properties,light-barrier properties,respectively.In vitro macrophage co-culture experiments showed that the MC/Col film can effectively inhibit macrophage proliferation and fusion,reducing fibrous capsule formation.In vivo bone repair assessment of a rabbit critical segmental radial defect proved that the MC/Col film performed better than other groups in promoting bone repair and regeneration due to their unique dual osteoinductive/barrier function.These findings provided evidence that MC/Col film has a great clinical potential for effective bone defect repair.
基金supported by the National Natural Science Foundation of China(No.81972892)。
文摘Lung cancer is one of the most common malignant tumors with the fastest increase in the incidence rate and mortality.Even after maximum tumor resection assistance with a radiotherapy and chemotherapy combination,the recurrence of non-small cell lung cancer is still inevitable.In addition,low targeting efficiency and poor permeability of drug delivery systems strongly affect the therapeutic efficiency of anti-cancer drugs on non-small cell lung cancer.Here we designed a gemcitabine(GEM)loaded arginineglycine-aspartic acid-cysteine(RGDc)-modified gold mineralization“hybrid nanozyme bomb”(RGTG)to overcome those obstacles.RGDc modification improved the active targeting of liposomes to the tumor tissues with the second near-infrared(NIR-Ⅱ)-triggered gold-shell disruption and GEM release.The collapsed gold-shell particles with a smaller size could penetrate the tumor solid barrier and act as photothermal therapy(PTT)agents to improve PTT therapy and starvation therapy via generating gluconic acid and reactive oxygen species(ROS).Moreover,the resting reversal effect of gold particles on tumor fibroblasts can achieve accelerating tumor penetration of gold particles and GEM.Compared to monotherapy,RGTG showed significant improvement in tumor inhibition,with a tumor volume reduction of 83%compared to the control group,which provides a promising tumor treatment platform for non-small cell lung cancer(NSCLC).
基金funded by the Ministry of Science and Higher Education of the Russian Federation(FSNM-2024-0005).
文摘Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samples to the killing fluid for seven days,corresponding to the average duration of well workovers in the oilfields in Perm Krai,Russia.Our findings indicate that critical factors influencing the interactions between rocks and the killing fluid include the chemical composition of the killing fluid,the mineralogical composition of the carbonate rocks,reservoir pressure and temperature,and the contact time.Petrophysical analyses using multi-scale X-ray computed tomography,field emission scanning electron microscopy,and X-ray diffraction were conducted on samples both before and after the well killing simulation.The experiments were performed using real samples of cores,crude oil,and the killing fluid.The results from this study indicate that low-mineralized water(practically fresh water)is a carbonate rock solvent.Such water causes the dissolution of rock components,the formation of new calcite crystals and amoeba-like secretions,and the migration of small particles(clay,quartz,and carbonates).The formation of deep channels was also recorded.The assessment reveals that the change in the pH of the killing fluid indicates that the observed mineral reactions were caused by carbonate dissolution.These combined phenomena led to a decrease in the total number of voids in the core samples,which was 25%on average,predominantly among voids measuring between 45 and 70μm in size.The change in the pore distribution in the bulk of the samples resulted in decreases in porosity of 1.8%and permeability of 67.0%in the studied core samples.The results from this study indicate the unsuitability of low-mineralized water as a well killing fluid in carbonate reservoirs.The composition of the killing fluid should be optimized,for example,in terms of the ionic composition of water,which we intend to investigate in future research.
基金supported by the National Natural Science Foundation of China(grant no.82102584)the National Key R&D Program of China(grant no.2020YFC1107601).
文摘At this stage,bone defects caused by trauma,infection,tumor,or congenital diseases are generally filled with autologous bone or allogeneic bone transplantation,but this treatment method has limited sources,potential disease transmission and other problems.Ideal bone-graft materials remain continuously explored,and bone defect reconstruction remains a significant challenge.Mineralized collagen prepared by bionic mineralization combining organic polymer collagen with inorganic mineral calcium phosphate can effectively imitate the composition and hierarchical structure of natural bone and has good application value in bone repair materials.Magnesium,strontium,zinc and other inorganic components not only can activate relevant signaling pathways to induce differentiation of osteogenic precursor cells but also stimulate other core biological processes of bone tissue growth and play an important role in natural bone growth,and bone repair and reconstruction.This study reviewed the advances in hydroxyapatite/collagen composite scaffolds and osseointegration with natural bone inorganic components,such as magnesium,strontium and zinc.
基金funded by the National Key R&D Program of China(No.2020YFC1107601)The Foshan-Tsinghua Innovation Special Fund(No.2020THFS05)the Key R&D Program in Shandong Province(2019JZZY011106).
文摘A new nerve guidance conduits(NGCs)named MC@Col containing Type I collagen(Col)and mineralized collagen(MC)was developed,enhancing mechanical and degradation behavior.The physicochemical properties,the mechanical properties and in vitro degradation behavior were all evaluated.The adhesion and proliferation of Schwann cells(SCs)were observed.In the in vivo experiment,MC@Col NGC and other conduits including Col,chitosan(CST)and polycaprolactone(PCL)conduit were implanted to repair a 10-mm-long Sprague-Dawley rat’s sciatic nerve defect.Histological analyses,morphological analyses,electrophysiological analyses and further gait analyses were all evaluated after implantation in 12 weeks.The strength and degradation performance of the MC@Col NGC were improved by the addition of MC in comparison with pure Col NGC.In vitro cytocompatibility evaluation revealed that the SCs had good viability,attachment and proliferation in the MC@Col.In in vivo results,the regenerative outcomes of MC@Col NGC were close to those by an autologous nerve graft in some respects,but superior to those by Col,CST and PCL conduits.The MC@Col NGC exhibited good mechanical performance as well as biocompatibility to bridge nerve gap and guide nerve regeneration,thus showing great promising potential as a new type of conduit in clinical applications.