期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
1
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
2
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
Modified Burgers' equation by the local discontinuous Galerkin method 被引量:3
3
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期106-110,共5页
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco... In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient. 展开更多
关键词 local discontinuous galerkin method modified Burgers' equation
下载PDF
Local discontinuous Galerkin method for solving Burgers and coupled Burgers equations 被引量:2
4
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期41-46,共6页
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e... In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation. 展开更多
关键词 local discontinuous galerkin method Burgers equation coupled Burgers equation
下载PDF
New Immersed Boundary Method on the Adaptive Cartesian Grid Applied to the Local Discontinuous Galerkin Method 被引量:1
5
作者 Xu-Jiu Zhang Yong-Sheng Zhu +1 位作者 Ke Yan You-Yun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期176-185,共10页
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ... Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research. 展开更多
关键词 Immersed boundary method Adaptive Cartesian grid local discontinuous galerkin method RECONSTRUCTION Heat transfer equation
下载PDF
Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System 被引量:1
6
作者 Jiawei Sun Shusen Xie Yulong Xing 《Communications on Applied Mathematics and Computation》 2022年第2期381-416,共36页
Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models s... Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well. 展开更多
关键词 local discontinuous galerkin methods Boussinesq equations Coupled BBM equations Error estimate Numerical fluxes Head-on collision
下载PDF
Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations 被引量:1
7
作者 Jie Du Eric Chung Yang Yang 《Communications on Applied Mathematics and Computation》 2022年第1期353-379,共27页
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi... In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme. 展开更多
关键词 Maximum-principle-preserving local discontinuous galerkin methods Allen-Cahn equation Conservative exponential integrations
下载PDF
Local Discontinuous Galerkin Method for the Time-Fractional KdV Equation with the Caputo-Fabrizio Fractional Derivative 被引量:1
8
作者 Huanhuan Wang Xiaoyan Xu +2 位作者 Junmei Dou Ting Zhang Leilei Wei 《Journal of Applied Mathematics and Physics》 2022年第6期1918-1935,共18页
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon... This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments. 展开更多
关键词 Caputo-Fabrizio Fractional Derivative local discontinuous galerkin method STABILITY Error Analysis
下载PDF
LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS
9
作者 张志娟 蔚喜军 常延贞 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1519-1535,共17页
In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that th... In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method. 展开更多
关键词 elliptic interface problem minimal dissipation local discontinuous galerkin method error estimates
下载PDF
LOCAL DISCONTINUOUS GALERKIN METHOD FOR RADIAL POROUS FLOW WITH DISPERSION AND ADSORPTION
10
作者 汪继文 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期977-982,共6页
Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model... Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model the radial porous flow with dispersion and adsorption,a local discontinuous Galerkin method for radial porous flow with dispersion and adsorption was developed,a high order accurary new scheme for radial porous flow is obtained.The presented method was applied to the numerical tests of two cases of radial porous,i.e., the convection-dispersion flow and the convection-dispersion-adsorption flow,the corresponding parts of the numerical results are in good agreement with the published solutions,so the presented method is reliable.Reckoning of the computational cost also shows that the method is practicable. 展开更多
关键词 DISPERSION ADSORPTION radial porous flow local discontinuous galerkin method
下载PDF
Meshless Local Discontinuous Petrov-Galerkin Method with Application to Blasting Problems
11
作者 强洪夫 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第5期376-383,共8页
A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based R... A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional nonoverlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes. 展开更多
关键词 meshless method discontinuous galerkin method meshless local discontinuous Petrov-galerkin (MLDPG) method finite-volume particle method convection-dominated flow
下载PDF
Local Discontinuous Galerkin Methods with Novel Basis for Fractional Diffusion Equations with Non-smooth Solutions
12
作者 Liyao Lyu Zheng Chen 《Communications on Applied Mathematics and Computation》 2022年第1期227-249,共23页
In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and the... In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions. 展开更多
关键词 local discontinuous galerkin methods Fractional diffusion equations Non-smooth solutions Novel basis Optimal order of accuracy
下载PDF
Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second‑Order Elliptic Problems on Cartesian Grids
13
作者 Mahboub Baccouch 《Communications on Applied Mathematics and Computation》 2022年第2期437-476,共40页
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia... This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results. 展开更多
关键词 Semilinear second-order elliptic boundary-value problems local discontinuous galerkin method A priori error estimation Optimal superconvergence SUPERCLOSENESS Gauss-Radau projections
下载PDF
A Local Discontinuous Galerkin Method with Generalized Alternating Fluxes for 2D Nonlinear Schrödinger Equations
14
作者 Hongjuan Zhang Boying Wu Xiong Meng 《Communications on Applied Mathematics and Computation》 2022年第1期84-107,共24页
In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not... In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results. 展开更多
关键词 local discontinuous galerkin method Two-dimensional nonlinear Schrödinger equation Generalized alternating fluxes Optimal error estimates
下载PDF
A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
15
作者 Somayeh Yeganeh Reza Mokhtari Jan SHesthaven 《Communications on Applied Mathematics and Computation》 2020年第4期689-709,共21页
For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numeric... For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis. 展开更多
关键词 Two-dimensional(2D)time fractional difusion equation local discontinuous galerkin method(LDG) Numerical stability Convergence analysis
下载PDF
一种基于局部间断Galerkin方法的IC互连线电容提取策略
16
作者 朱洪强 邵如梦 +3 位作者 赵郑豪 杨航 汤谨溥 蔡志匡 《微电子学》 CAS 北大核心 2024年第1期127-133,共7页
求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形... 求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形区域内部去掉数量不等的导体区域,在这种特殊的计算区域上,通过数值测试验证了LDG方法能达到理论的收敛阶。随着芯片制造工艺的发展,导体尺寸和间距也越来越小,给数值模拟带来新的问题。文章采用倍增网格剖分方法,大幅减小了计算单元数。对包含不同数量和形状导体的七个电路版图,用新方法提取互连线电容,得到的结果与商业工具给出的结果非常接近,表明了新方法的有效性。 展开更多
关键词 局部间断galerkin方法 寄生参数提取 互连线电容 集成电路工艺
下载PDF
对流扩散方程的隐式全离散局部间断Galerkin方法
17
作者 赵思敏 宋灵宇 《新疆大学学报(自然科学版中英文)》 CAS 2024年第5期532-541,共10页
研究了对流扩散方程的隐式全离散局部间断Galerkin方法的稳定性和误差分析.将三阶隐式Runge-Kutta时间离散和具有广义交替数值流通量的LDG方法相结合得到全离散LDG格式,通过广义交替数值流通量,建立数值解和辅助解内积之间的关系,证明... 研究了对流扩散方程的隐式全离散局部间断Galerkin方法的稳定性和误差分析.将三阶隐式Runge-Kutta时间离散和具有广义交替数值流通量的LDG方法相结合得到全离散LDG格式,通过广义交替数值流通量,建立数值解和辅助解内积之间的关系,证明了全离散LDG格式的无条件稳定,同时引入广义Gauss-Radau投影,通过投影的逼近性质和一些基本不等式建立了数值方法的最优误差估计,最后通过数值实验验证该方法理论分析的正确性. 展开更多
关键词 对流扩散方程 局部间断galerkin方法 隐式Runge-Kutta 广义交替流通量
下载PDF
Local Discontinuous Galerkin Methods with Decoupled Implicit-Explicit Time Marching for the Growth-Mediated Autochemotactic Pattern Formation Model
18
作者 Hui Wang Hui Guo +1 位作者 Jiansong Zhang Lulu Tian 《Advances in Applied Mathematics and Mechanics》 SCIE 2024年第1期208-236,共29页
In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and dec... In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and decoupled,which greatly improve the computational efficiency.In order to resolve the time level mismatch of the discretization process,a special time marching method with high-order accuracy is constructed.Under the condition of slight time step constraints,the optimal error estimates of this method are given.Moreover,the theoretical results are verified by numerical experiments.Real simulations show the patterns of spots,rings,stripes as well as inverted spots because of the interplay of chemotactic drift and growth rate of the cells. 展开更多
关键词 local discontinuous galerkin methods implicit-explicit time-marching scheme error estimate growth-mediated autochemotactic pattern formation model
原文传递
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
19
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method local discontinuous galerkin(DG)method
下载PDF
Caputo型时间分数阶变系数扩散方程的局部间断Galerkin方法
20
作者 代巧巧 李东霞 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期174-190,共17页
提出一种带有Caputo导数的时间分数阶变系数扩散方程的数值解法.方程的解在初始时刻附近通常具有弱正则性,采用非一致网格上的L1公式离散时间分数阶导数,并使用局部间断Galerkin(local discontinuous Galerkin,LDG)方法离散空间导数,给... 提出一种带有Caputo导数的时间分数阶变系数扩散方程的数值解法.方程的解在初始时刻附近通常具有弱正则性,采用非一致网格上的L1公式离散时间分数阶导数,并使用局部间断Galerkin(local discontinuous Galerkin,LDG)方法离散空间导数,给出方程的全离散格式.基于离散的分数阶Gronwall不等式,证明了格式的数值稳定性和收敛性,且所得结果关于α是鲁棒的,即当α→1^(-)时不会发生爆破.最后,通过数值算例验证理论分析的结果. 展开更多
关键词 局部间断galerkin方法 非一致时间网格 α-鲁棒 弱正则性 变系数
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部