A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the t...A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.展开更多
A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is ...A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.展开更多
基金supported by the National Natural Science Foundation of China(61773398 61703421)
文摘A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.
基金supported by the Aeronautical Science Foundation of China (No.20130196004)
文摘A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.