It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis o...Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.展开更多
In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-bas...In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.展开更多
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl...As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.展开更多
In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can n...In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.展开更多
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati...Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.展开更多
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim...In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.展开更多
Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the ...Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the matrix Lasso are two important algorithms based on nuclear norm minimization. In this paper, we first prove some decay properties of restricted isometry constants, then we discuss the recovery errors of these two algorithms and give a new bound of restricted isometry constant to guarantee stable recovery, which improves the results of [11].展开更多
Robust principal component analysis(PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm ...Robust principal component analysis(PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm minimization. Those methods simultaneously minimize all the singular values, and thus the rank cannot be well approximated in practice. We extend the idea of truncated nuclear norm regularization(TNNR) to the robust PCA and consider truncated nuclear norm minimization(TNNM) instead of nuclear norm minimization(NNM). This method only minimizes the smallest N-r singular values to preserve the low-rank components, where N is the number of singular values and r is the matrix rank. Moreover, we propose an effective way to determine r via the shrinkage operator. Then we develop an effective iterative algorithm based on the alternating direction method to solve this optimization problem. Experimental results demonstrate the efficiency and accuracy of the TNNM method. Moreover, this method is much more robust in terms of the rank of the reconstructed matrix and the sparsity of the error.展开更多
In recent years,accurate Gaussian noise removal has attracted considerable attention for mobile applications,as in smart phones.Accurate conventional denoising methods have the potential ability to improve denoising p...In recent years,accurate Gaussian noise removal has attracted considerable attention for mobile applications,as in smart phones.Accurate conventional denoising methods have the potential ability to improve denoising performance with no additional time.Therefore,we propose a rapid post-processing method for Gaussian noise removal in this paper.Block matching and 3D filtering and weighted nuclear norm minimization are utilized to suppress noise.Although these nonlocal image denoising methods have quantitatively high performance,some fine image details are lacking due to the loss of high frequency information.To tackle this problem,an improvement to the pioneering RAISR approach(rapid and accurate image super-resolution),is applied to rapidly post-process the denoised image.It gives performance comparable to state-of-the-art super-resolution techniques at low computational cost,preserving important image structures well.Our modification is to reduce the hash classes for the patches extracted from the denoised image and the pixels from the ground truth to 18 filters by two improvements:geometric conversion and reduction of the strength classes.In addition,following RAISR,the census transform is exploited by blending the image processed by noise removal methods with the filtered one to achieve artifact-free results.Experimental results demonstrate that higher quality and more pleasant visual results can be achieved than by other methods,efficiently and with low memory requirements.展开更多
Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatter...Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatterers smaller than ultrasound beam wavelength.The signal-dependent speckle noise makes visual observation difficult.In this paper,we propose a patch-based low-rank approach for reducing the speckle noise in ultrasound images.After constructing the patch group of the ultrasound images by the block-matching scheme,we establish a variational model using the weighted nuclear norm as a regularizer for the patch group.The alternating direction method of multipliers(ADMM)is applied for solving the established nonconvex model.We return all the approximate patches to their original locations and get the final restored ultrasound images.Experimental results are given to demonstrate that the proposed method outperforms some existing state-of-the-art methods in terms of visual quality and quantitative measures.展开更多
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
文摘Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)。
文摘In this paper,a space-time adaptive processing(STAP)method is proposed for the airborne radar with the array amplitude-phase error considered,which is based on atomic norm minimization(ANM).In the conventional ANM-based STAP method,the influence of the array amplitude-phase error is not considered and restrained,which inevitably causes performance deterioration.To solve this problem,the array amplitude-phase error is firstly estimated.Then,by pre-estimating the array amplitude-phase error information,a modified ANM model is built,in which the array amplitude-phase error factor is separated from the clutter response and the clutter covariance matrix(CCM)to improve the estimation accuracy of the CCM.To prove that the atomic norm theory is applicable in the presence of the array amplitude-phase error,the clutter sparsity is analyzed in this paper.Meanwhile,simulation results demonstrate that the proposed method is superior to the state-of-the-art STAP method.Moreover,the measured data is used to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6140130861572063)+7 种基金the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Science and Technology Support Project of Hebei Province(15210409)the Natural Science Foundation of Hebei University(2014-303)the National Comprehensive Ability Promotion Project of Western and Central China
文摘As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.
基金Sponsored by the National"Eleventh-five"Tackle Key Problem Program-China Science and Technology Support Project(Grant No.2006BAJ01A04)
文摘In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.
基金the HKRGC GRF 12306616,12200317,12300218 and 12300519,and HKU Grant 104005583.
文摘Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China under grants U21A20455,61972265,11871348 and 11701388by the Natural Science Foundation of Guangdong Province of China under grant 2020B1515310008by the Educational Commission of Guangdong Province of China under grant 2019KZDZX1007.
文摘In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.
基金Supported by the National Natural Science Foundation of China(No.11171299)
文摘Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the matrix Lasso are two important algorithms based on nuclear norm minimization. In this paper, we first prove some decay properties of restricted isometry constants, then we discuss the recovery errors of these two algorithms and give a new bound of restricted isometry constant to guarantee stable recovery, which improves the results of [11].
基金the Doctoral Program of Higher Education of China(No.20120032110034)
文摘Robust principal component analysis(PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm minimization. Those methods simultaneously minimize all the singular values, and thus the rank cannot be well approximated in practice. We extend the idea of truncated nuclear norm regularization(TNNR) to the robust PCA and consider truncated nuclear norm minimization(TNNM) instead of nuclear norm minimization(NNM). This method only minimizes the smallest N-r singular values to preserve the low-rank components, where N is the number of singular values and r is the matrix rank. Moreover, we propose an effective way to determine r via the shrinkage operator. Then we develop an effective iterative algorithm based on the alternating direction method to solve this optimization problem. Experimental results demonstrate the efficiency and accuracy of the TNNM method. Moreover, this method is much more robust in terms of the rank of the reconstructed matrix and the sparsity of the error.
基金This research was funded by the National Natural Science Foundation of China under Grant Nos.61873117,62007017,61773244,61772253,and 61771231。
文摘In recent years,accurate Gaussian noise removal has attracted considerable attention for mobile applications,as in smart phones.Accurate conventional denoising methods have the potential ability to improve denoising performance with no additional time.Therefore,we propose a rapid post-processing method for Gaussian noise removal in this paper.Block matching and 3D filtering and weighted nuclear norm minimization are utilized to suppress noise.Although these nonlocal image denoising methods have quantitatively high performance,some fine image details are lacking due to the loss of high frequency information.To tackle this problem,an improvement to the pioneering RAISR approach(rapid and accurate image super-resolution),is applied to rapidly post-process the denoised image.It gives performance comparable to state-of-the-art super-resolution techniques at low computational cost,preserving important image structures well.Our modification is to reduce the hash classes for the patches extracted from the denoised image and the pixels from the ground truth to 18 filters by two improvements:geometric conversion and reduction of the strength classes.In addition,following RAISR,the census transform is exploited by blending the image processed by noise removal methods with the filtered one to achieve artifact-free results.Experimental results demonstrate that higher quality and more pleasant visual results can be achieved than by other methods,efficiently and with low memory requirements.
基金supported by NSF of Jiangsu Province(No.BK20181483),NSFC(Nos.11671002,11701079,61731009)the Fundamental Research Funds for the Central Universities,and Science and Technology Commission of Shanghai Municipality(Nos.19JC1420102,18dz2271000)Hai Yan project,Lianyungang 521 project and NSF of HHIT(No.Z2017004).
文摘Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatterers smaller than ultrasound beam wavelength.The signal-dependent speckle noise makes visual observation difficult.In this paper,we propose a patch-based low-rank approach for reducing the speckle noise in ultrasound images.After constructing the patch group of the ultrasound images by the block-matching scheme,we establish a variational model using the weighted nuclear norm as a regularizer for the patch group.The alternating direction method of multipliers(ADMM)is applied for solving the established nonconvex model.We return all the approximate patches to their original locations and get the final restored ultrasound images.Experimental results are given to demonstrate that the proposed method outperforms some existing state-of-the-art methods in terms of visual quality and quantitative measures.