In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degr...In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair.展开更多
基金This reserch is supported by the National Natural Science Foundation of China (No.19971090).
文摘In the study of cappable and noncappable properties of the recursively enumerable (r.e.) degrees, Lempp suggested a conjecture which asserts that for all r.e. degrees a and b, if a ≮ b then there exists an r.e. degree c such that c ≮ a and c ≮ b and c is cappable. We shall prove in this paper that this conjecture holds under the condition that a is high. Working below a high r.e. degree h, we show that for any r.e. degree b with h ≮ b, there exist r.e. degrees aO and al such that a0, al ≮ b, aO,a1 ≮ h, and aO and a1 form a minimal pair.