期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performance assessment of genetic programming(GP)and minimax probability machine regression(MPMR)for prediction of seismic ultrasonic attenuation 被引量:3
1
作者 Manoj Kumar Manav Mittal Pijush Samui 《Earthquake Science》 2013年第2期147-150,共4页
The determination of seismic attenuation (s) (dB/cm) is a challenging task in earthquake science. This article employs genetic programming (GP) and minimax probability machine regression (MPMR) for prediction ... The determination of seismic attenuation (s) (dB/cm) is a challenging task in earthquake science. This article employs genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of s. GP is developed based on genetic algo- rithm. MPMR maximizes the minimum probability of future predictions being within some bound of the true regression function. Porosity (n) (%), permeability (k) (millidarcy), grain size (d) (μm), and clay content (c) (%) have been considered as inputs of GP and MPMR. The output of GP and MPMR is s. The developed GP gives an equation for prediction of s. The results of GP and MPMR have been compared with the artificial neural net- work. This article gives robust models based on GP and MPMR for prediction of s. 展开更多
关键词 Seismic attenuation Geneticprogramming minimax probability machineregression Artificial neural network PREDICTION
下载PDF
Prediction of chaotic time series based on modified minimax probability machine regression 被引量:2
2
作者 孙建成 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3262-3270,共9页
Long-term prediction of chaotic time series is very difficult,for the Chaos restricts predictability.in this paper a new method is studied to model and predict chaotic time series based on minimax probability machine ... Long-term prediction of chaotic time series is very difficult,for the Chaos restricts predictability.in this paper a new method is studied to model and predict chaotic time series based on minimax probability machine regression (MPMR). Since the positive global Lyapunov exponents lead the errors to increase exponentially in modelling the chaotic time series, a weighted term is introduced to compensate a cost function. Using mean square error (MSE) and absolute error (AE) as a criterion, simulation results show that the proposed method is more effective and accurate for multistep prediction. It can identify the system characteristics quite well and provide a new way to make long-term predictions of the chaotic time series. 展开更多
关键词 minimax probability machine regression (MPMR) time series PREDICTION CHAOS
下载PDF
Chaotic Load Series Forecasting Based on MPMR
3
作者 Liu Zunxiong Cheng Quanhu Zhang Deyun 《Electricity》 2006年第1期25-28,共4页
Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε ... Minimax probability machine regression (MPMR) was proposed for chaotic load time series global prediction. In MPMR, regression function maximizes the minimum probability that future predication will be within an ε to the true regression function. After exploring the principle of MPMR, and verifying the chaotic property of the load series from a certain power system, one-day-ahead predictions for 24 time points next day wcre done with MPMR. Thc results demonstrate that MPMP has satisfactory prediction efficiency. Kernel function shape parameter and regression tube value may influence the MPMR-based system performance. In the experiments, cross validation was used to choose the two parameters. 展开更多
关键词 electrical load short-term forecasting minimax probability regression chaos theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部