Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobi...Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.展开更多
In urban Vehicular Ad hoc Networks(VANETs),high mobility of vehicular environment and frequently changed network topology call for a low delay end-to-end routing algorithm.In this paper,we propose a Multi-Agent Reinfo...In urban Vehicular Ad hoc Networks(VANETs),high mobility of vehicular environment and frequently changed network topology call for a low delay end-to-end routing algorithm.In this paper,we propose a Multi-Agent Reinforcement Learning(MARL)based decentralized routing scheme,where the inherent similarity between the routing problem in VANET and the MARL problem is exploited.The proposed routing scheme models the interaction between vehicles and the environment as a multi-agent problem in which each vehicle autonomously establishes the communication channel with a neighbor device regardless of the global information.Simulation performed in the 3GPP Manhattan mobility model demonstrates that our proposed decentralized routing algorithm achieves less than 45.8 ms average latency and high stability of 0.05%averaging failure rate with varying vehicle capacities.展开更多
Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO) and mobile edge computing (MEC) are prominent technologies to meet high data rate demand in the sixth generation (6G) communication networks...Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO) and mobile edge computing (MEC) are prominent technologies to meet high data rate demand in the sixth generation (6G) communication networks. In this paper, we aim to minimize the transmission delay in the MIMO-MEC in order to improve the spectral efficiency, energy efficiency, and data rate of MEC offloading. Dinkelbach transform and generalized singular value decomposition (GSVD) method are used to solve the delay minimization problem. Analytical results are provided to evaluate the performance of the proposed Hybrid-NOMA-MIMO-MEC system. Simulation results reveal that the H-NOMA-MIMO-MEC system can achieve better delay performance and lower energy consumption compared to OMA.展开更多
The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and mini...The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and minimal delay is the least decoding delay in the time dimension. Many authors have observed that regarding the complex orthogonal designs for space-time block codes with the antennas n = 4k ( k ∈ N ), its minimal delay is the same as that for n - 4k -1. However none was able to prove it. In this paper, we use the characteristics of Hadamard matrix to prove this property to fulfill this vacancy.展开更多
基金supported in part by National Natural Science Foundation of China Grant 61672524the Fundamental Research Funds for the Central University+1 种基金the Research Funds of Renmin University of China, 2015030273National Key Technology Support Program 2014BAK12B06
文摘Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.
基金This work is supported by the National Science Foundation of China under grant No.61901403,61790551,and 61925106,Youth Innovation Fund of Xiamen No.3502Z20206039 and Tsinghua-Foshan Innovation Special Fund(TFISF)No.2020THFS0109.
文摘In urban Vehicular Ad hoc Networks(VANETs),high mobility of vehicular environment and frequently changed network topology call for a low delay end-to-end routing algorithm.In this paper,we propose a Multi-Agent Reinforcement Learning(MARL)based decentralized routing scheme,where the inherent similarity between the routing problem in VANET and the MARL problem is exploited.The proposed routing scheme models the interaction between vehicles and the environment as a multi-agent problem in which each vehicle autonomously establishes the communication channel with a neighbor device regardless of the global information.Simulation performed in the 3GPP Manhattan mobility model demonstrates that our proposed decentralized routing algorithm achieves less than 45.8 ms average latency and high stability of 0.05%averaging failure rate with varying vehicle capacities.
基金supported by Republic of Turkey Ministry of National Education
文摘Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO) and mobile edge computing (MEC) are prominent technologies to meet high data rate demand in the sixth generation (6G) communication networks. In this paper, we aim to minimize the transmission delay in the MIMO-MEC in order to improve the spectral efficiency, energy efficiency, and data rate of MEC offloading. Dinkelbach transform and generalized singular value decomposition (GSVD) method are used to solve the delay minimization problem. Analytical results are provided to evaluate the performance of the proposed Hybrid-NOMA-MIMO-MEC system. Simulation results reveal that the H-NOMA-MIMO-MEC system can achieve better delay performance and lower energy consumption compared to OMA.
文摘The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and minimal delay is the least decoding delay in the time dimension. Many authors have observed that regarding the complex orthogonal designs for space-time block codes with the antennas n = 4k ( k ∈ N ), its minimal delay is the same as that for n - 4k -1. However none was able to prove it. In this paper, we use the characteristics of Hadamard matrix to prove this property to fulfill this vacancy.