期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm 被引量:3
1
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期426-434,共9页
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i... Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction. 展开更多
关键词 minimum attribute reduction quantum-inspired shuf- fled frog leaping algorithm multi-state quantum bit quantum rotation gate and quantum mutation elitist frog.
下载PDF
MINIMUM ATTRIBUTE CO-REDUCTION ALGORITHM BASED ON MULTILEVEL EVOLUTIONARY TREE WITH SELF-ADAPTIVE SUBPOPULATIONS
2
作者 丁卫平 王建东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期175-184,共10页
Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient mi... Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results. 展开更多
关键词 minimum attribute reduction self-adaptive subpopulation multilevel evolutionary tree interacting decision variable magnetic resonance image(MRI)segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部