In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial ...In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial distribution.Maximum likelihood estimator is highly affected by the outliers.We resort to the minimum density power divergence estimator as a robust estimator and showthat it is strongly consistent and asymptotically normal under some regularity conditions.Simulation results are provided to illustrate the performance of the estimator.An application is performed on data for campylobacteriosis infections.展开更多
基金supported by National Natural Science Foundation of China(Nos.11871027,11731015)Science and Technology Developing Plan of Jilin Province(No.20170101057JC)Cultivation Plan for Excellent Young Scholar Candidates of Jilin University.
文摘In this paper,we study a robust estimation method for the observation-driven integervalued time-series models in which the conditional probability mass of current observations is assumed to follow a negative binomial distribution.Maximum likelihood estimator is highly affected by the outliers.We resort to the minimum density power divergence estimator as a robust estimator and showthat it is strongly consistent and asymptotically normal under some regularity conditions.Simulation results are provided to illustrate the performance of the estimator.An application is performed on data for campylobacteriosis infections.