This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
Fractional factorial split-plot design has been widely used in many fields due to its advantage of saving experimental cost. The general minimum lower order confounding criterion is usually used as one of the attracti...Fractional factorial split-plot design has been widely used in many fields due to its advantage of saving experimental cost. The general minimum lower order confounding criterion is usually used as one of the attractive design criterion for selecting fractional factorial split-plot design. In this paper, we are interested in the theoretical construction methods of the optimal fractional factorial split-plot designs under the general minimum lower order confounding criterion. We present the theoretical construction methods of optimal fractional factorial split-plot designs under general minimum lower order confounding criterion under several conditions.展开更多
In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the compl...In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the complementary design means a design in which all the Hamming distances of any two runs are the same, which generalizes the concept of a pair of complementary designs in the literature. Based on relationships of the uniformity pattern between a pair of complementary designs, we propose a minimum projection uniformity (MPU) rule to assess and compare two-level factorials.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be d...Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.展开更多
To solve the inverse kinematics problem for redundant degrees of freedom(DOFs)manipulators has been and still continues to be quite challenging in the field of robotics.Aiming at trajectory planning for a 7-DOF spac...To solve the inverse kinematics problem for redundant degrees of freedom(DOFs)manipulators has been and still continues to be quite challenging in the field of robotics.Aiming at trajectory planning for a 7-DOF space manipulator system,joint rotation trajectories are obtained from predetermined motion trajectories and poses of the end effector in Cartesian space based on the proposed generalized inverse kinematics method.A minimum norm method is employed to choose the best trajectory among available trajectories.Numerical simulations with the7-DOF manipulator show that the proposed method can achieve the planned trajectory and pose under the circumstances of minimum angular velocities.Moreover,trajectory results from the proposed kinematics model and inverse kinematics method has the advantages of simple modelling,low computation cost,easy to solve and plan trajectory conveniently.The smooth and continuous joint rotation functions obtained from the proposed method are suitable for practical engineering applications.展开更多
A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the s...A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.展开更多
The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a sta...The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.展开更多
Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal f...Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) coordination on multiple point(CoMP) systems.So a minimum mean square error(MSE) based sub-optimal sequence design criterion was proposed,including ideal sequence correlation property and sequence length constraint.The simulation results verify the theory analysis.展开更多
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
文摘Fractional factorial split-plot design has been widely used in many fields due to its advantage of saving experimental cost. The general minimum lower order confounding criterion is usually used as one of the attractive design criterion for selecting fractional factorial split-plot design. In this paper, we are interested in the theoretical construction methods of the optimal fractional factorial split-plot designs under the general minimum lower order confounding criterion. We present the theoretical construction methods of optimal fractional factorial split-plot designs under general minimum lower order confounding criterion under several conditions.
基金supported by the NSF of China (10671080)NCET (06-672)the Key Project of Chinese Ministry of Education (105119)
文摘In this article, we consider the characterization problem in design theory. The objective is to characterize minimum projection uniformity for two-level designs in terms of their complementary designs. Here, the complementary design means a design in which all the Hamming distances of any two runs are the same, which generalizes the concept of a pair of complementary designs in the literature. Based on relationships of the uniformity pattern between a pair of complementary designs, we propose a minimum projection uniformity (MPU) rule to assess and compare two-level factorials.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
文摘Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.
基金Supported by Aerospace Science and Technology Innovation Foundation(CAST20100141107)
文摘To solve the inverse kinematics problem for redundant degrees of freedom(DOFs)manipulators has been and still continues to be quite challenging in the field of robotics.Aiming at trajectory planning for a 7-DOF space manipulator system,joint rotation trajectories are obtained from predetermined motion trajectories and poses of the end effector in Cartesian space based on the proposed generalized inverse kinematics method.A minimum norm method is employed to choose the best trajectory among available trajectories.Numerical simulations with the7-DOF manipulator show that the proposed method can achieve the planned trajectory and pose under the circumstances of minimum angular velocities.Moreover,trajectory results from the proposed kinematics model and inverse kinematics method has the advantages of simple modelling,low computation cost,easy to solve and plan trajectory conveniently.The smooth and continuous joint rotation functions obtained from the proposed method are suitable for practical engineering applications.
文摘A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.
文摘The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.
基金International Science&Technology Cooperation Projects of Qinghai,China(Nos.2013-H-811,2014-HZ-821)Chunhui Plan Projects,China(Nos.Z2014013,Z2014014)
文摘Although the Cramer-Rao Bound(CRB) can be used as the benchmark of estimation algorithm performance,it's too complicated for joint training sequence(TS) design for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) coordination on multiple point(CoMP) systems.So a minimum mean square error(MSE) based sub-optimal sequence design criterion was proposed,including ideal sequence correlation property and sequence length constraint.The simulation results verify the theory analysis.