Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these...Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.展开更多
许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小...许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小包含球球心在原始空间中的代理原像,提出了一种隐藏支持向量信息并能快速实现分类的SVM方法,称为隐私保护的快速SVM分类方法(Fast Classification Approach of SVM with Privacy Preservation,FCA-SVMWPP).同时提供了两种求解代理球心原像的方法,分别称为QP解法和直接解法.UCI和PIE人脸数据集的实验结果表明,本文方法可解决上述两个问题并具有较好的效果.展开更多
基金supported by the National High-Tech Research and Development 863 Program of China under Grant No. 2006AA12A106
文摘Ordinal regression is one of the most important tasks of relation learning, and several techniques based on support vector machines (SVMs) have also been proposed for tackling it, but the scalability aspect of these approaches to handle large datasets still needs much of exploration. In this paper, we will extend the recent proposed algorithm Core Vector Machine (CVM) to the ordinal-class data, and propose a new algorithm named as Ordinal-Class Core Vector Machine (OCVM). Similar with CVM, its asymptotic time complexity is linear with the number of training samples, while the space complexity is independent with the number of training samples. We also give some analysis for OCVM, which mainly includes two parts, the first one shows that OCVM can guarantee that the biases are unique and properly ordered under some situation; the second one illustrates the approximate convergence of the solution from the viewpoints of objective function and KKT conditions. Experiments on several synthetic and real world datasets demonstrate that OCVM scales well with the size of the dataset and can achieve comparable generalization performance with existing SVM implementations.
文摘许多核分类方法的决策函数可以表示为支持向量的组合,如SVM,而支持向量含有非常重要的隐私信息,因此,在分类决策时可能会暴露此类信息,同时分类速度受限于支持向量的个数,如SVM的分类复杂度为O(|SVs|).为解决上述两个问题,本文基于最小包含球球心在原始空间中的代理原像,提出了一种隐藏支持向量信息并能快速实现分类的SVM方法,称为隐私保护的快速SVM分类方法(Fast Classification Approach of SVM with Privacy Preservation,FCA-SVMWPP).同时提供了两种求解代理球心原像的方法,分别称为QP解法和直接解法.UCI和PIE人脸数据集的实验结果表明,本文方法可解决上述两个问题并具有较好的效果.