In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recove...In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.展开更多
This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and ...This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.展开更多
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical appr...In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.展开更多
文摘In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.
基金Project supported by the National Natural Science Foundation of China (Grant No.60972055)the Development Foundation of the Education Commission of Shanghai Municipality (Grant No.09CG40)+1 种基金the Shanghai Pujiang Program (Grant No.08PJ14057)the Science and Technology Commission of Shanghai Municipality (Grant No.10220710300)
文摘This paper investigates the interference cancellation (IC) scheme for uplink cognitive radio systems, using the spectrum underlay strategy where the primary users (PUs) and the secondary users (SUs) coexist and operate in the same spectrum. Joint MMSE-based parallel interference cancellation (PIC) and Turbo decoding scheme is proposed to reduce the interference to the PUs, as well as to the SUs, in which the minimum mean square estimation (MMSE) filter is only employed in the first iteration, regarded as the "weakest link" of the whole detection process, to improve the quality of the preliminary detections results before they are fed to the Turbo decoder. Simulation results show that the proposed scheme can efficiently eliminate the interference to the PUs, as well as to the SUs.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 60773085 and 60801051)
文摘In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.