This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines...This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic su...In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.展开更多
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec...Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE).展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recove...In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.展开更多
The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain dive...The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain diversity gain.According to the transmission characteristics of OFDM symbols on multiple antennas,a pilot-aided Linear Minimum Mean-Square-Error(LMMSE) channel estimation algorithm with low complexity is designed.Simulation results show that,the proposed LMMSE estimator outperforms least-square estimator and approaches the optimal estimator without error in the performance of Symbol Error Ratio(SER) under several modulation modes,and has a good estimation effect in the realistic relay communication scenario.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-sq...There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-square continuity if the process is mean-square continuous. In this paper we present a modified kernel estimator and substantiate that the modified estimator satisfies the property of mean-square continuity. In a simulation study the results show the modified estimator is better than the original estimator in some cases.展开更多
通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Itera...通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Iterative Implementation of MMSE,II-MMSE)。该算法将原有的稀疏表示模型中稀疏信号矢量的求解问题,转化为迭代求解稀疏功率对角阵,进而估计多目标信号的DOA。给出了算法的完整实现流程,从理论上分析了II-MMSE算法的迭代收敛性和对阵列模型误差的鲁棒性。仿真结果表明,II-MMSE算法在低信噪比、相干背景、小样本、阵列未校准等条件下都具有良好的测向精度和多目标分辨能力。展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
If we restrict the postman to traversing each edge at most twice in the windypostman problem (WPP), we will get a new problem: 2WPP. An approximation algorithmhas been posed by M. Guan for the WPP. In the present pape...If we restrict the postman to traversing each edge at most twice in the windypostman problem (WPP), we will get a new problem: 2WPP. An approximation algorithmhas been posed by M. Guan for the WPP. In the present paper, we improve the estimatederror given by M. Guan and show that we can estimate the error for the 2WPP by findinga minimum cost circulation. We also pose a new sufficient condition for the equivalencebetween WPP and 2WPP, which can be checked in polynomial time steps.展开更多
基金supported in part by the National Natural Science Foundation of China(61933007, U21A2019, 62273005, 62273088, 62303301)the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Natural Science Foundation of Anhui Province of China (2108085MA07)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the National Natural Science Foundation of China (6096200161071088)+2 种基金the Natural Science Foundation of Fujian Province of China (2012J05119)the Fundamental Research Funds for the Central Universities (11QZR02)the Research Fund of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (21104)
文摘In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.
文摘Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE).
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
文摘In optical techniques,noise signal is a classical problem in medical image processing.Recently,there has been considerable interest in using the wavelet transform with Bayesian estimation as a powerful tool for recovering image from noisy data.In wavelet domain,if Bayesian estimator is used for denoising problem,the solution requires a prior knowledge about the distribution of wavelet coeffcients.Indeed,wavelet coeffcients might be better modeled by super Gaussian density.The super Gaussian density can be generated by Gaussian scale mixture(GSM).So,we present new minimum mean square error(MMSE)estimator for spherically-contoured GSM with Maxwell distribution in additive white Gaussian noise(AWGN).We compare our proposed method to current state-of-the-art method applied on standard test image and we quantify achieved performance improvement.
基金Supported by the National Natural Science Foundation of Jiangsu province(No.08KJB510015)
文摘The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain diversity gain.According to the transmission characteristics of OFDM symbols on multiple antennas,a pilot-aided Linear Minimum Mean-Square-Error(LMMSE) channel estimation algorithm with low complexity is designed.Simulation results show that,the proposed LMMSE estimator outperforms least-square estimator and approaches the optimal estimator without error in the performance of Symbol Error Ratio(SER) under several modulation modes,and has a good estimation effect in the realistic relay communication scenario.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金Project supported by the National Natural Science Foundation of China (Grant No.60773081)the Shanghai Leading Academic Discipline Project (Grant No.S30104)
文摘There have been many papers presenting kernel density estimators for a strictly stationary continuous time process observed over the time interval [0, T ]. However the estimators do not satisfy the property of mean-square continuity if the process is mean-square continuous. In this paper we present a modified kernel estimator and substantiate that the modified estimator satisfies the property of mean-square continuity. In a simulation study the results show the modified estimator is better than the original estimator in some cases.
文摘通过稀疏重构得到传感器阵列输出数据的稀疏表示模型,研究了单快拍采样情形下的信号到达角(Direction of Arrival,DOA)估计问题。提出了一种基于最小均方误差(Minimum Mean-Square Error,MMSE)准则迭代实现的单快拍到达角估计算法(Iterative Implementation of MMSE,II-MMSE)。该算法将原有的稀疏表示模型中稀疏信号矢量的求解问题,转化为迭代求解稀疏功率对角阵,进而估计多目标信号的DOA。给出了算法的完整实现流程,从理论上分析了II-MMSE算法的迭代收敛性和对阵列模型误差的鲁棒性。仿真结果表明,II-MMSE算法在低信噪比、相干背景、小样本、阵列未校准等条件下都具有良好的测向精度和多目标分辨能力。
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
文摘If we restrict the postman to traversing each edge at most twice in the windypostman problem (WPP), we will get a new problem: 2WPP. An approximation algorithmhas been posed by M. Guan for the WPP. In the present paper, we improve the estimatederror given by M. Guan and show that we can estimate the error for the 2WPP by findinga minimum cost circulation. We also pose a new sufficient condition for the equivalencebetween WPP and 2WPP, which can be checked in polynomial time steps.