We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation...We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation of “gravitons”, using the Rosen and Israelit model of a nonsingular universe. In doing so we are in addition to obtaining a wavelength 10<sup>30</sup> times greater than Planck’s length so we can calculate DE, may be able to with the help of the Rosen and Israelit model have a first approximation as to the arrow of time, and a universe with massive gravity. We have left the particulars of the nonsingular starting point undefined but state that the Rosen and Israelit model postulates initial temperatures of 10<sup>-180</sup> Kelvin and also a value of about Planck temperature, at 10<sup>-3</sup> centimeters radii value which may satisfy initial conditions asked by t’Hooft for describing an arrow of time. A key assumption is that the DE is formed at 10<sup>-3</sup> cm, after an expansion of 10<sup>30</sup> times in radii, from the Planck length radius nonsingular starting point. The given starting point for DE in this set of assumptions is where there is a change in the cosmic acceleration, to a zero value, according to Rosen and Israel, with time <i>t</i> = 1.31 times 10<sup>-42</sup> seconds. That may be where we may specify a potential magnitude, <i>V</i>, which has ties into inflaton physics. The particulars of the model from Rosen and Israelit allow a solution to be found, without discussion of where that nonsingular starting point came from, a point the author found in need of drastic remedies and fixes.展开更多
We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there w...We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there we first access the Rosen solution to a mini universe energy to ascertain an energy value of t, the pre-inflationary near singularity, then access what would be needed as to inject information into our universe. We then close with an argument by Narilkar as to a quantum bound on the Einstein-Hilbert action integral, so as to obtain quantum Gravity. Narlikar omits the cosmological constant. We keep it in, for our overall conclusion about the cosmological constant and its relevance to Quantum gravity.展开更多
We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation...We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation of “gravitons”, while using Karen Freeze’s criteria as to the breakup of primordial black holes to give radiation era contributions to GW generation. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes of the order of Planck mass (10<sup>15</sup> grams) which is about when the mass of relic black holes is created, 10<sup>-27</sup> or so seconds after expansion starts. Needles to state a key result will be in the initial potential V calculated, in terms of other input variables.展开更多
The following is a rendition of what was presented by the author, September 11, 2020 in the DE section of that conference. The topics, while not original, are in strict fidelity with the topics the author was allowed ...The following is a rendition of what was presented by the author, September 11, 2020 in the DE section of that conference. The topics, while not original, are in strict fidelity with the topics the author was allowed to present in ICRANET Zeldovich 4, 2020. We present a history of the evolution of the cosmological constant “issue” starting with its introduction by Einstein for a static universe, which did not work out because his static universe solution to the Ricci Scalar problem, and GR was and is UNSTABLE. Another model of the cosmological constant has a radius of the Universe specified which is proportional to one over the square root of the cosmological constant, whereas our idea is to use the matching of two spacetime first integrals, for isolating a nonperturbative cosmological constant solution right at the surface of the start of expansion of the universe, <i>i.e.</i> a phenomenological solution to the cosmological constant involves scaling of a radius of the PRESENT universe. Our presented idea is to instead solve the Cosmological constant at the surface of the initial space-time bubble, using the initially derived time step, delta t, as input for the Cosmological constant. As it is, the Zeldovich 4 Section I was in was for Dark Energy, so in solving the initial value of the Cosmological constant, I am giving backing to one of the models of DE as to why the Universe reaccelerates one billion years ago. We conclude as to a reference to a multiverse generalization of Penrose Cyclic Conformal Cosmology as input into the initial nonsingular space-time bubble.展开更多
We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not su...We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not such a consensus as to how the mouth of a wormhole could generate signals. We try to develop a model for doing so and then revisit it, the Wormhole while considering a Tokamak model we used in a different publication as a way of generating GW, and Gravitons.展开更多
We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gr...We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gravitons” to a small region of space-time prior to a nonsingular start to the universe. We compare this to a solution which worked out using Klauder Enhanced quantization, for the same given problem. The solution of the first Cosmological Constant problem relies upon the geometry of the multiverse generalization of CCC cosmology which is explained in this paper. The second solution used involves Klauder enhanced quantization. We look at energy given by our methods and compare and contrast it with the negative energy of the Rosen model for a mini sub-universe and estimate GW frequencies.展开更多
We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as o...We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.展开更多
We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Univer...We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Universe or as Karen Freeze and others have modeled a non-singular start. The two cases are different and touch upon the limits of validity of the Penrose singularity theorem. We will first of all state the two cases, singular and nonsingular, and then afterwards, briefly allude to the Penrose singularity theorem. The plausibility of the singular cosmological expansion start point w case analysis of Black holes from a prior universe will be discussed first Afterwards, a synopsis of the Penrose singularity theorem. After that, the Nonsingular case of a starting point of the expansion of the Universe will be entertained and described. Since the nonsingular start to the expansion of the Universe is not so well known, a considerable amount of space will be spent upon what I view as mathematical constructions allowing for its analysis. About the only way to ascertain these cases will be by GW astronomy, hence the details of GW production from the early Universe will be covered in excruciating detail. The methodology for that section is simple. Use a construction for a minimal time-step, then from there get emergent space-time conditions for a bridge from a nonsingular start to the universe, to potential Quantum gravity conditions. Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small timestep, which is called <i>t</i>, and then the minimum scale factor and even the tension or property values of the initial space-time wall, all of which are a consequence of a “trivial” solution taking into account “massive” gravitons. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets. Finally upon doing this, the outlines of the way to ascertain data sets as to either falsify or confirm the Penrose suggestion will be the final concluding part of the manuscript.展开更多
针对无人汽车车队在附着系数较低的路面上行驶的纵向控制问题,提出考虑道路附着系数和本车无法持续获取前车加速度信息的最小安全车距的计算方法,以此来对传统的期望车间距的恒定时间间隔(Constant Time Gap,CTG)算法进行改进.然后,采...针对无人汽车车队在附着系数较低的路面上行驶的纵向控制问题,提出考虑道路附着系数和本车无法持续获取前车加速度信息的最小安全车距的计算方法,以此来对传统的期望车间距的恒定时间间隔(Constant Time Gap,CTG)算法进行改进.然后,采用分层的结构设计队列控制系统,并通过对车队的队列稳定性进行分析,得出上层控制中的控制器增益的取值条件.最后,对一个由4辆车组成的车队进行仿真验证.结果表明:提出的改进恒定时间间隔算法可以在路面附着系数较低的情况下保证车队的队列稳定性,同时能够避免相邻两车间发生碰撞.在本车无法获取前车加速度信息且前车紧急制动的情况下,采用改进的恒定时间间隔算法的车队在行驶过程中的最大车间距偏差率为19%,低于应用传统方法时的最大车间距偏差率22.27%,且车间距误差随着时间的增长最终收敛至零.采用改进的恒定时间间隔算法的车队在行驶过程中车辆的加速度的最大值为0.75 m/s^(2),低于利用传统方法时的加速度的最大值0.91 m/s^(2),说明改进的恒定时间间隔算法可以保证车队的稳定行驶,并且具有较好的乘坐舒适性.展开更多
文摘We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation of “gravitons”, using the Rosen and Israelit model of a nonsingular universe. In doing so we are in addition to obtaining a wavelength 10<sup>30</sup> times greater than Planck’s length so we can calculate DE, may be able to with the help of the Rosen and Israelit model have a first approximation as to the arrow of time, and a universe with massive gravity. We have left the particulars of the nonsingular starting point undefined but state that the Rosen and Israelit model postulates initial temperatures of 10<sup>-180</sup> Kelvin and also a value of about Planck temperature, at 10<sup>-3</sup> centimeters radii value which may satisfy initial conditions asked by t’Hooft for describing an arrow of time. A key assumption is that the DE is formed at 10<sup>-3</sup> cm, after an expansion of 10<sup>30</sup> times in radii, from the Planck length radius nonsingular starting point. The given starting point for DE in this set of assumptions is where there is a change in the cosmic acceleration, to a zero value, according to Rosen and Israel, with time <i>t</i> = 1.31 times 10<sup>-42</sup> seconds. That may be where we may specify a potential magnitude, <i>V</i>, which has ties into inflaton physics. The particulars of the model from Rosen and Israelit allow a solution to be found, without discussion of where that nonsingular starting point came from, a point the author found in need of drastic remedies and fixes.
文摘We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there we first access the Rosen solution to a mini universe energy to ascertain an energy value of t, the pre-inflationary near singularity, then access what would be needed as to inject information into our universe. We then close with an argument by Narilkar as to a quantum bound on the Einstein-Hilbert action integral, so as to obtain quantum Gravity. Narlikar omits the cosmological constant. We keep it in, for our overall conclusion about the cosmological constant and its relevance to Quantum gravity.
文摘We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wave just prior to specifying the creation of “gravitons”, while using Karen Freeze’s criteria as to the breakup of primordial black holes to give radiation era contributions to GW generation. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes of the order of Planck mass (10<sup>15</sup> grams) which is about when the mass of relic black holes is created, 10<sup>-27</sup> or so seconds after expansion starts. Needles to state a key result will be in the initial potential V calculated, in terms of other input variables.
文摘The following is a rendition of what was presented by the author, September 11, 2020 in the DE section of that conference. The topics, while not original, are in strict fidelity with the topics the author was allowed to present in ICRANET Zeldovich 4, 2020. We present a history of the evolution of the cosmological constant “issue” starting with its introduction by Einstein for a static universe, which did not work out because his static universe solution to the Ricci Scalar problem, and GR was and is UNSTABLE. Another model of the cosmological constant has a radius of the Universe specified which is proportional to one over the square root of the cosmological constant, whereas our idea is to use the matching of two spacetime first integrals, for isolating a nonperturbative cosmological constant solution right at the surface of the start of expansion of the universe, <i>i.e.</i> a phenomenological solution to the cosmological constant involves scaling of a radius of the PRESENT universe. Our presented idea is to instead solve the Cosmological constant at the surface of the initial space-time bubble, using the initially derived time step, delta t, as input for the Cosmological constant. As it is, the Zeldovich 4 Section I was in was for Dark Energy, so in solving the initial value of the Cosmological constant, I am giving backing to one of the models of DE as to why the Universe reaccelerates one billion years ago. We conclude as to a reference to a multiverse generalization of Penrose Cyclic Conformal Cosmology as input into the initial nonsingular space-time bubble.
文摘We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not such a consensus as to how the mouth of a wormhole could generate signals. We try to develop a model for doing so and then revisit it, the Wormhole while considering a Tokamak model we used in a different publication as a way of generating GW, and Gravitons.
文摘We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gravitons” to a small region of space-time prior to a nonsingular start to the universe. We compare this to a solution which worked out using Klauder Enhanced quantization, for the same given problem. The solution of the first Cosmological Constant problem relies upon the geometry of the multiverse generalization of CCC cosmology which is explained in this paper. The second solution used involves Klauder enhanced quantization. We look at energy given by our methods and compare and contrast it with the negative energy of the Rosen model for a mini sub-universe and estimate GW frequencies.
文摘We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.
文摘We examine if there are grounds to entertain the Penrose suggestion as to black holes from a prior cycle of creation appearing in the present cosmos. There are two cases to consider. One a singular start to the Universe or as Karen Freeze and others have modeled a non-singular start. The two cases are different and touch upon the limits of validity of the Penrose singularity theorem. We will first of all state the two cases, singular and nonsingular, and then afterwards, briefly allude to the Penrose singularity theorem. The plausibility of the singular cosmological expansion start point w case analysis of Black holes from a prior universe will be discussed first Afterwards, a synopsis of the Penrose singularity theorem. After that, the Nonsingular case of a starting point of the expansion of the Universe will be entertained and described. Since the nonsingular start to the expansion of the Universe is not so well known, a considerable amount of space will be spent upon what I view as mathematical constructions allowing for its analysis. About the only way to ascertain these cases will be by GW astronomy, hence the details of GW production from the early Universe will be covered in excruciating detail. The methodology for that section is simple. Use a construction for a minimal time-step, then from there get emergent space-time conditions for a bridge from a nonsingular start to the universe, to potential Quantum gravity conditions. Our Methodology is to construct using a “trivial” solution to massive gravitons, and a nonsingular start for expansion of the universe. Our methodology has many unintended consequences, not the least is a relationship between a small timestep, which is called <i>t</i>, and then the minimum scale factor and even the tension or property values of the initial space-time wall, all of which are a consequence of a “trivial” solution taking into account “massive” gravitons. From there we next will in future articles postulate conditions for experimental detectors for subsequent data sets to obtain falsifiable data sets. Finally upon doing this, the outlines of the way to ascertain data sets as to either falsify or confirm the Penrose suggestion will be the final concluding part of the manuscript.
文摘针对无人汽车车队在附着系数较低的路面上行驶的纵向控制问题,提出考虑道路附着系数和本车无法持续获取前车加速度信息的最小安全车距的计算方法,以此来对传统的期望车间距的恒定时间间隔(Constant Time Gap,CTG)算法进行改进.然后,采用分层的结构设计队列控制系统,并通过对车队的队列稳定性进行分析,得出上层控制中的控制器增益的取值条件.最后,对一个由4辆车组成的车队进行仿真验证.结果表明:提出的改进恒定时间间隔算法可以在路面附着系数较低的情况下保证车队的队列稳定性,同时能够避免相邻两车间发生碰撞.在本车无法获取前车加速度信息且前车紧急制动的情况下,采用改进的恒定时间间隔算法的车队在行驶过程中的最大车间距偏差率为19%,低于应用传统方法时的最大车间距偏差率22.27%,且车间距误差随着时间的增长最终收敛至零.采用改进的恒定时间间隔算法的车队在行驶过程中车辆的加速度的最大值为0.75 m/s^(2),低于利用传统方法时的加速度的最大值0.91 m/s^(2),说明改进的恒定时间间隔算法可以保证车队的稳定行驶,并且具有较好的乘坐舒适性.