期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A related degree-based frequent pattern mining algorithm for railway fault data
1
作者 Jiaxu Guo Ding Ding +2 位作者 Peihan Yang Qi Zou Yaping Huang 《High-Speed Railway》 2024年第2期101-109,共9页
It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq... It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies. 展开更多
关键词 High utility QUANTITATIVE frequent pattern mining Related degree pruning Fixed pattern length
下载PDF
SWFP-Miner: an efficient algorithm for mining weighted frequent pattern over data streams
2
作者 Wang Jie Zeng Yu 《High Technology Letters》 EI CAS 2012年第3期289-294,共6页
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque... Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner. 展开更多
关键词 weighted frequent pattern (WFP) mining data streams data mining slidingwindow SWFP-Miner
下载PDF
Hybrid Recommender System Using Systolic Tree for Pattern Mining
3
作者 S.Rajalakshmi K.R.Santha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1251-1262,共12页
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in... A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved. 展开更多
关键词 Recommender systems hybrid recommender systems frequent pattern mining collaborativefiltering systolic tree river formation dynamics particle swarm optimization
下载PDF
Adaptive associative classification with emerging frequent patterns
4
作者 Wang Xiaofeng Zhang Dapeng Shi Zhongzhi 《High Technology Letters》 EI CAS 2012年第1期38-44,共7页
In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM... In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively. 展开更多
关键词 associative classification RULE frequent pattern mining emerging frequent pattern supportvector machine (SVM)
下载PDF
Mining Software Repository for Cleaning Bugs Using Data Mining Technique 被引量:1
5
作者 Nasir Mahmood Yaser Hafeez +4 位作者 Khalid Iqbal Shariq Hussain Muhammad Aqib Muhammad Jamal Oh-Young Song 《Computers, Materials & Continua》 SCIE EI 2021年第10期873-893,共21页
Despite advances in technological complexity and efforts,software repository maintenance requires reusing the data to reduce the effort and complexity.However,increasing ambiguity,irrelevance,and bugs while extracting... Despite advances in technological complexity and efforts,software repository maintenance requires reusing the data to reduce the effort and complexity.However,increasing ambiguity,irrelevance,and bugs while extracting similar data during software development generate a large amount of data from those data that reside in repositories.Thus,there is a need for a repository mining technique for relevant and bug-free data prediction.This paper proposes a fault prediction approach using a data-mining technique to find good predictors for high-quality software.To predict errors in mining data,the Apriori algorithm was used to discover association rules by fixing confidence at more than 40%and support at least 30%.The pruning strategy was adopted based on evaluation measures.Next,the rules were extracted from three projects of different domains;the extracted rules were then combined to obtain the most popular rules based on the evaluation measure values.To evaluate the proposed approach,we conducted an experimental study to compare the proposed rules with existing ones using four different industrial projects.The evaluation showed that the results of our proposal are promising.Practitioners and developers can utilize these rules for defect prediction during early software development. 展开更多
关键词 Fault prediction association rule data mining frequent pattern mining
下载PDF
Efficient Incremental Maintenance of Frequent Patterns with FP-Tree 被引量:9
6
作者 Xiu-LiMa Yun-HaiTong +1 位作者 Shi-WeiTang Dong-QingYang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第6期876-884,共9页
Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, effi... Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the entire database repeatedly, which is an obvious disadvantage. In this paper, an efficient incremental mining algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when incremental data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree and re-running frequent pattern growth (FP-growth). Keywords data mining - association rule mining - frequent pattern mining - incremental mining Supported by the National Basic Research 973 Program of China under Grant No.G1999032705.Xiu-Li Ma received the Ph.D. degree in computer science from Peking University in 2003. She is currently a postdoctoral researcher at National Lab on Machine Perception of Peking University. Her main research interests include data warehousing, data mining, intelligent online analysis, and sensor network.Yun-Hai Tong received the Ph.D. degree in computer software from Peking University in 2002. He is currently an assistant professor at School of Electronics Engineering and Computer Science of Peking University. His research interests include data warehousing, online analysis processing and data mining.Shi-Wei Tang received the B.S. degree in mathematics from Peking University in 1964. Now, he is a professor and Ph.D. supervisor at School of Electronics Engineering and Computer Science of Peking University. His research interests include DBMS, information integration, data warehousing. OLAP, and data mining, database technology in specific application fields. He is the vice chair of the Database Society of China Computer Federation.Dong-Qing Yang received the B.S. degree in mathematics from Peking University in 1969. Now, she is a professor and Ph.D supervisor at School of Electronics Engineering and Computer Science of Peking University. Her research interests include database design methodology, database system implementation techniques, data warehousing and data mining, information integration and sharing in Web environment. She is a member of academic committee of Database Society of China Computer Federation. 展开更多
关键词 data mining association rule mining frequent pattern mining incremental mining
原文传递
Parallel Frequent Pattern Discovery:Challenges and Methodology
7
作者 张宇宙 王建勇 周立柱 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第6期719-728,共10页
Parallel frequent pattern discovery algorithms exploit parallel and distributed computing resources to relieve the sequential bottlenecks of current frequent pattern mining (FPM) algorithms. Thus, parallel FPM algor... Parallel frequent pattern discovery algorithms exploit parallel and distributed computing resources to relieve the sequential bottlenecks of current frequent pattern mining (FPM) algorithms. Thus, parallel FPM algorithms achieve better scalability and performance, so they are attracting much attention in the data mining research community. This paper presents a comprehensive survey of the state-of-the-art parallel and distributed frequent pattern mining algorithms with more emphasis on pattern discovery from complex data (e.g., sequences and graphs) on various platforms. A review of typical parallel FPM algorithms uncovers the major challenges, methodologies, and research problems in the field of parallel frequent pattern discovery, such as work-load balancing, finding good data layouts, and data decomposition. This survey also indicates a dramatic shift of the research interest in the field from the simple parallel frequent itemset mining on traditional parallel and distributed platforms to parallel pattern mining of more complex data on emerging architectures, such as multi-core systems and the increasingly mature grid infrastructure. 展开更多
关键词 frequent pattern mining parallel computing dynamic load balancing
原文传递
User-Level Sentiment Evolution Analysis in Microblog
8
作者 ZHANG Lumin JIA Yan ZHU Xiang ZHOU Bin HAN Yi 《China Communications》 SCIE CSCD 2014年第12期152-163,共12页
People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applica... People's attitudes towards public events or products may change overtime,rather than staying on the same state.Understanding how sentiments change overtime is an interesting and important problem with many applications.Given a certain public event or product,a user's sentiments expressed in microblog stream can be regarded as a vector.In this paper,we define a novel problem of sentiment evolution analysis,and develop a simple yet effective method to detect sentiment evolution in user-level for public events.We firstly propose a multidimensional sentiment model with hierarchical structure to model user's complicate sentiments.Based on this model,we use FP-growth tree algorithm to mine frequent sentiment patterns and perform sentiment evolution analysis by Kullback-Leibler divergence.Moreover,we develop an improve Affinity Propagation algorithm to detect why people change their sentiments.Experimental evaluations on real data sets show that sentiment evolution could be implemented effectively using our method proposed in this article. 展开更多
关键词 data mining sentiment evolution multidimensional sentiment model frequent sentiment patterns microblog
下载PDF
Stage Division and Pattern Discovery of Complex Patient Care Processes 被引量:4
9
作者 WANG Tingyan TIAN Xin +2 位作者 YU Ming QI Xin YANG Lan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第5期1136-1159,共24页
This paper studies the design of a clinical pathway that defines medical service activities within each stage of a patient care process. Much prior research has developed clinicM process models that consider the traje... This paper studies the design of a clinical pathway that defines medical service activities within each stage of a patient care process. Much prior research has developed clinicM process models that consider the trajectory of services occurring in a care process, by using data mining techniques on process execution logs. A novel approach that provides a more efficient way of clinical pathway design is introduced in this paper. Based on the strategy of TEI@I methodology, the proposed approach integrates statistical methods, optimization techniques and data mining. With the preprocessed data, a complex care process is subsequently divided into several medical stages, and then the patterns of each stage are identified, and thus a clinical pathway is developed. Finally, the proposed method is applied to the real world, using archival data derived from a hospital in Beijing, about three diseases that involve various departments, with an average of 300 samples for each disease. The results of real- world applications demonstrate that the proposed method can automatically and efficiently facilitate clinical pathways design. The main contributions to the field in this paper include (a) a new application of TEI@I methodology in healthcare domain, (b) a novel method for complex processes analysis, (c) tangible evidence of automatic clinical pathways design in the real world. 展开更多
关键词 Clinical pathway frequent pattern mining stage division TEI@I virtual business.
原文传递
Discovering top-k patterns with differential privacy-an accurate approach 被引量:2
10
作者 Xiaojian ZHANG Xiaofeng MENG 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第5期816-827,共12页
Frequent pattern mining discovers sets of items that frequently appear together in a transactional database; these can serve valuable economic and research purposes. However, if the database contains sensitive data (... Frequent pattern mining discovers sets of items that frequently appear together in a transactional database; these can serve valuable economic and research purposes. However, if the database contains sensitive data (e.g., user behavior records, electronic health records), directly releas- ing the discovered frequent patterns with support counts will carry significant risk to the privacy of individuals. In this pa- per, we study the problem of how to accurately find the top-k frequent patterns with noisy support counts on transactional databases while satisfying differential privacy. We propose an algorithm, called differentially private frequent pattern (DFP- Growth), that integrates a Laplace mechanism and an expo- nential mechanism to avoid privacy leakage. We theoretically prove that the proposed method is (λ, δ)-useful and differ- entially private. To boost the accuracy of the returned noisy support counts, we take consistency constraints into account to conduct constrained inference in the post-processing step. Extensive experiments, using several real datasets, confirm that our algorithm generates highly accurate noisy support counts and top-k frequent patterns. 展开更多
关键词 frequent pattern mining differential privacy constrained inference.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部