BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,w...BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were ...The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were examined, on the basis of experience acquired over the period of a decade in cooperative research projects with large industrial process plants located mostly in the Camacari Petrochemical Complex, Bahia State, Brazil. The main results consist of training about 1700 industry professionals in CP, the identification of about 500 ideas for the rationalization of water use, the presentation and publication of 90 articles in journals, conferences and other academic events, identification of ideas with potential water savings estimated at around 1400 t·h–1 and the reduction of at least 500 t·h–1 in effluents. Other sectors that make use of water, for example public buildings, commercial buildings, homes, shopping centers and airports can adapt and use the TECLIM method as will be exemplified.展开更多
Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the...Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the State of Bahia, Brazil. This method is concerned with an area of secondary interest to the productive sector: the use of water. Based on the best cleaner production principles (CP), nine instruments have been developed during cooperative projects with chemical, petrochemical and copper metallurgical industries. These instruments are described in Part 2 of this paper [1]. The main benefits derived from partnership schemes include: a reduction in water consumption and effluent generation;the development of a techno-operational culture to increase eco-efficiency;and the introduction of conceptual projects to ensure the continuity of the activities in the company after the projects have been completed. The specific consumption of water was reduced by 20% as a consequence of the application of this method in Company A;a specific reduction in the generation of effluents of more than 40% was observed in Company B;a 42% fall in fresh water consumption in Company C;and a 20% decrease in the cost of effluent treatment in Company D. Among the difficulties encountered were the limited time availability of the operators and engineers for the project, the lack of measurement and calibration of available flow meters and the lack of detailed technical data.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
文摘BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
文摘The instruments developed by the Clean Technology Network of Bahia (TECLIM) at the Federal University of Bahia (UFBA) (cited in Part 1 of this paper) are presented. Factors regarding water management in industry were examined, on the basis of experience acquired over the period of a decade in cooperative research projects with large industrial process plants located mostly in the Camacari Petrochemical Complex, Bahia State, Brazil. The main results consist of training about 1700 industry professionals in CP, the identification of about 500 ideas for the rationalization of water use, the presentation and publication of 90 articles in journals, conferences and other academic events, identification of ideas with potential water savings estimated at around 1400 t·h–1 and the reduction of at least 500 t·h–1 in effluents. Other sectors that make use of water, for example public buildings, commercial buildings, homes, shopping centers and airports can adapt and use the TECLIM method as will be exemplified.
文摘Based on cleaner production concepts, a method for water use minimization has been developed by the Clean Technology Network of Bahia (TECLIM) at one of the largest industrial complexes in Latin America located in the State of Bahia, Brazil. This method is concerned with an area of secondary interest to the productive sector: the use of water. Based on the best cleaner production principles (CP), nine instruments have been developed during cooperative projects with chemical, petrochemical and copper metallurgical industries. These instruments are described in Part 2 of this paper [1]. The main benefits derived from partnership schemes include: a reduction in water consumption and effluent generation;the development of a techno-operational culture to increase eco-efficiency;and the introduction of conceptual projects to ensure the continuity of the activities in the company after the projects have been completed. The specific consumption of water was reduced by 20% as a consequence of the application of this method in Company A;a specific reduction in the generation of effluents of more than 40% was observed in Company B;a 42% fall in fresh water consumption in Company C;and a 20% decrease in the cost of effluent treatment in Company D. Among the difficulties encountered were the limited time availability of the operators and engineers for the project, the lack of measurement and calibration of available flow meters and the lack of detailed technical data.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.