Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the...Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the range of monitoring is not sufficient due to the limits of monitoring points and the associated numerical result is not accurate.In this study,we aim to present a spatial deduction model to characterize the mining-induced stress distribution using machine learning algorithm on limited monitoring data.First,the framework of the spatial deduction model is developed on the basis of non-negative matrix factorization(NMF)algorithm and optimized by mechanical mechanism.In this framework,the spatial correlation of stress response is captured from numerical results,and the learned correlation is employed in NMF as a mechanical constrain to augment the limited monitoring data and obtain the overall mechanical performances.Then,the developed model is applied to a coal mine in Shandong,China.Experimental results show the stress distribution in one plane is derived by several monitoring points,where mining induced stress release is observed in goaf and stress concentration in coal pillar,and the intersection point between goaf and coal seam is a sensitive area.The indicators used to evaluate the property of the presented model indicate that 83%mechanical performances have been captured and the deduction accuracy is about 92.9%.Therefore,it is likely that the presented deduction model is reliable.展开更多
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehe...The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.展开更多
Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extra...Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster.展开更多
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa...Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts.展开更多
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie...Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.展开更多
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole st...In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.展开更多
The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the charac...The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed.展开更多
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (...In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,展开更多
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre...The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.展开更多
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th...The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit.展开更多
Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gate...Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.展开更多
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studi...Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth.展开更多
Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive mea...Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.展开更多
The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtaine...The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated.展开更多
Mining-induced seismicity is a reflection of rock geomechanical evolution of geological environment in the natural and man-made systems and in the mining-technical systems. In order to predict and prevent mining-induc...Mining-induced seismicity is a reflection of rock geomechanical evolution of geological environment in the natural and man-made systems and in the mining-technical systems. In order to predict and prevent mining-induced seismicity, it is necessary to research geodynamics and stress state of intact rock mass, to determine possible deformations and additional stresses as a result of large-scale rock extraction, conditions of accumulated energy release. For that a geodynamical monitoring is required on every stage of deposit development and a closing. The report considers principal influencing factors of preparation and occurrence of mining-induced earthquakes. Also it estimates precursors and indicators of rock mass breaking point, and experience concerning prediction and prevention of mining-induced seismicity in the Khibiny apatite mines in the Murmansk region, which is the largest mining province.展开更多
Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p...Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects...This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.展开更多
There are considerable challenges associated with the design of ground support for seismically-active underground mines.It is extremely difficult to establish the demand on ground support as well as the capacity of a ...There are considerable challenges associated with the design of ground support for seismically-active underground mines.It is extremely difficult to establish the demand on ground support as well as the capacity of a ground support system.The resulting dynamic or impact loads caused by mining-induced seismicity are difficult to anticipate and quantify.The performance of a ground support system is defined by the load distribution and interaction between several reinforcement and surface support elements.Consequently,the design of ground support in seismically-active mines tends to evolve,or be modified based on qualitative assessments of perceived performance or response to significant seismic events or rockbursts.This research is motivated by a need to provide quantitative and data-driven design guidelines for ground support systems subjected to dynamic-loading conditions.Rockburst data were collected from three deep and seismically-active underground mines in the Sudbury basin in Canada.The constructed database comprises 209 seismic events that resulted in damage to mine excavations and ground support.These events were associated with damage at 324 locations within the three mines.The developed ground support design strategy,based on these documented case studies,identifies areas where the use of dynamic or enhanced support should be employed.The developed design methodology provides guidelines for the zoning of mine locations in which installation of enhanced support is recommended,the specifications for an optimal ground support system,and the timing or sequence of installation.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51991392)Key deployment projects of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2021-3)Project for Research Assistant of Chinese Academy of Sciences,and National Key R&D Program of China(Grant No.2021YFC3100805).
文摘Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the range of monitoring is not sufficient due to the limits of monitoring points and the associated numerical result is not accurate.In this study,we aim to present a spatial deduction model to characterize the mining-induced stress distribution using machine learning algorithm on limited monitoring data.First,the framework of the spatial deduction model is developed on the basis of non-negative matrix factorization(NMF)algorithm and optimized by mechanical mechanism.In this framework,the spatial correlation of stress response is captured from numerical results,and the learned correlation is employed in NMF as a mechanical constrain to augment the limited monitoring data and obtain the overall mechanical performances.Then,the developed model is applied to a coal mine in Shandong,China.Experimental results show the stress distribution in one plane is derived by several monitoring points,where mining induced stress release is observed in goaf and stress concentration in coal pillar,and the intersection point between goaf and coal seam is a sensitive area.The indicators used to evaluate the property of the presented model indicate that 83%mechanical performances have been captured and the deduction accuracy is about 92.9%.Therefore,it is likely that the presented deduction model is reliable.
基金supported by the State Key Basic Research Program of China(No.2011CB201201)the National Natural Science Foundation of China(Nos.11172318 and 51134018)the Program of International S&T Cooperation of China(No.2010DFA64560)
文摘The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.
基金financially supported by the National Key Research and Development Program (No. 2016YFC0801402)the National Natural Science Foundation of China (No. 51374236)Chongqing Research Program of Basic Research and Frontier Technology of China (No. cstc2015jcyj BX0076)
文摘Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster.
基金This research was carried out by the following funded projects:National Natural Science Foundation of China(51604270,51874292,and 51804303)Fundamental Research Funds for the Central Universities(2017QNA26)+2 种基金Natural Science Foundation of Jiangsu Province(BK20180643)Independent Research Projects of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(SKLCRSM15X04)The first author also acknowledges the China Postdoctoral Council International Postdoctoral Exchange Fellowship Program(20170060).
文摘Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts.
文摘Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.
基金Projects(10702072, 10632100) supported by the National Nature Science Foundation of China
文摘In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2008AA062102)the National Science and Technology Program in the 11th Five-year Plan of China (2008BAB36B07)
文摘The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed.
基金financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)the National Natural Science Foundation of China(Grant No.51674170)
文摘In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.51874175)the China Coal Technology&Engineering Group Foundation(Grant Nos.2018RC001,KJ-2018-TDKCZL-02).Comments from two anonymous reviewers and the editor are also greatly appreciated.
文摘The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.
基金funds supported by the State Key Basic Research Project of China(No.2011CB201201)
文摘The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit.
文摘Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.
基金financially supported by the Natural Science and Engineering Research Council of Canada(NSERC) in partnership with Vale Ltd.-Sudbury Operations,Canada,under the Collaborative Research and Development Program
文摘Fault-slip taking place in underground mines occasionally causes severe damage to mine openings as a result of strong ground motion induced by seismic waves arising from fault-slip. It is indicated from previous studies that intense seismic waves could be generated with the shock unloading of fault surface asperities during fault-slip. This study investigates the shock unloading with numerical simulation. A three-dimensional (3D) numerical model with idealized asperities is constructed with the help of discrete element code 3DEC. The idealization is conducted to particularly focus on simulating the shock unloading that previous numerical models, which replicate asperity degradation and crack development during the shear behavior of a joint surface in previous studies, fail to capture and simulate. With the numerical model, static and dynamic analyses are carried out to simulate unloading of asperities in the course of fault-slip. The results obtained from the dynamic analysis show that gradual stress release takes place around the center of the asperity tip at a rate of 45 MPa/ms for the base case, while an instantaneous stress release greater than 80 MPa occurs near the periphery of the asperity tip when the contact between the upper and lower asperities is lost. The instantaneous stress release becomes more intense in the vicinity of the asperity tip, causing tensile stress more than 20 MPa. It is deduced that the tensile stress could further increase if the numerical model is discretized more densely and analysis is carried out under stress conditions at a great depth. A model parametric study shows that in-situ stress state has a significant influence on the magnitude of the generated tensile stress. The results imply that the rapid stress release generating extremely high tensile stress on the asperity tip can cause intense seismic waves when it occurs at a great depth.
基金support for this work provided by the Fundamental Research Funds for the Central Universities(China University of Mining & Technology) (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Safe Mining(No. SKLCRSM08X02)
文摘Based on radon gas properties and its existing projects applications, we firstly attempted to apply geo- physical and chemical properties of radon gas in the field of mining engineering, and imported radioac- tive measurement method to detect the development process of the overlying strata mining-induced fractures and their contained water quality in underground coal mining, which not only innovates a more simple-fast-reliable detection method, but also further expands the applications of radon gas detection technology in mining field. A 3D simulation design of comprehensive testing system for detecting strata mining-induced fractures on surface with radon gas (CTSR) was carried out by using a large-scale 3D solid model design software Pro/Engineer (Pro/E), which overcame three main disadvantages of ''static design thought, 2D planar design and heavy workload for remodification design'' on exiting design for mining engineering test systems. Meanwhile, based on the simulation design results of Pro/E software, the sta- bility of the jack-screw pressure bar for the key component in CTSR was checked with a material mechan- ics theory, which provided a reliable basis for materials selection during the latter machining process.
基金FoundatianitemProject (99 mining 20267) supported by Coal Science Fund .
文摘The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated.
文摘Mining-induced seismicity is a reflection of rock geomechanical evolution of geological environment in the natural and man-made systems and in the mining-technical systems. In order to predict and prevent mining-induced seismicity, it is necessary to research geodynamics and stress state of intact rock mass, to determine possible deformations and additional stresses as a result of large-scale rock extraction, conditions of accumulated energy release. For that a geodynamical monitoring is required on every stage of deposit development and a closing. The report considers principal influencing factors of preparation and occurrence of mining-induced earthquakes. Also it estimates precursors and indicators of rock mass breaking point, and experience concerning prediction and prevention of mining-induced seismicity in the Khibiny apatite mines in the Murmansk region, which is the largest mining province.
基金funded by the Sichuan Science and Technology Program (grant number 2022NSFSC1176)the open Fund for National Key Laboratory of Geological Disaster Prevention and Environmental Protection (grant number SKLGP2022K027)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z001)。
文摘Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
基金This work has been supported by the National Key Research and Development Program(Grant No.2017YFC0603000)which was jointly completed by the Coal Mining Research Branch of CCRI,China University of Mining and Technology(Xuzhou and Beijing),Henan Polytechnic UniversityXinji Energy Company Limited of China Coal Energy Group.This work was also supported by the National Natural Science Foundation of China(Grant No.51927807)。
文摘This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.
文摘There are considerable challenges associated with the design of ground support for seismically-active underground mines.It is extremely difficult to establish the demand on ground support as well as the capacity of a ground support system.The resulting dynamic or impact loads caused by mining-induced seismicity are difficult to anticipate and quantify.The performance of a ground support system is defined by the load distribution and interaction between several reinforcement and surface support elements.Consequently,the design of ground support in seismically-active mines tends to evolve,or be modified based on qualitative assessments of perceived performance or response to significant seismic events or rockbursts.This research is motivated by a need to provide quantitative and data-driven design guidelines for ground support systems subjected to dynamic-loading conditions.Rockburst data were collected from three deep and seismically-active underground mines in the Sudbury basin in Canada.The constructed database comprises 209 seismic events that resulted in damage to mine excavations and ground support.These events were associated with damage at 324 locations within the three mines.The developed ground support design strategy,based on these documented case studies,identifies areas where the use of dynamic or enhanced support should be employed.The developed design methodology provides guidelines for the zoning of mine locations in which installation of enhanced support is recommended,the specifications for an optimal ground support system,and the timing or sequence of installation.