Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square...Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.展开更多
In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system ...In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.展开更多
In this paper we introduce a primal-dual potential reduction algorithm for positive semi-definite programming. Using the symetric preserving scalings for both primal and dual interior matrices, we can construct an alg...In this paper we introduce a primal-dual potential reduction algorithm for positive semi-definite programming. Using the symetric preserving scalings for both primal and dual interior matrices, we can construct an algorithm which is very similar to the primal-dual potential reduction algorithm of Huang and Kortanek [6] for linear programming. The complexity of the algorithm is either O(nlog(X0 · S0/ε) or O(nlog(X0· S0/ε) depends on the value of ρ in the primal-dual potential function, where X0 and S0 is the initial interior matrices of the positive semi-definite programming.展开更多
文摘Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.
文摘In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.
基金This research was partially supported by a fund from Chinese Academy of Science,and a fund from the Personal Department of the State Council.It is also sponsored by scientific research foundation for returned overseas Chinese Scholars,State Education
文摘In this paper we introduce a primal-dual potential reduction algorithm for positive semi-definite programming. Using the symetric preserving scalings for both primal and dual interior matrices, we can construct an algorithm which is very similar to the primal-dual potential reduction algorithm of Huang and Kortanek [6] for linear programming. The complexity of the algorithm is either O(nlog(X0 · S0/ε) or O(nlog(X0· S0/ε) depends on the value of ρ in the primal-dual potential function, where X0 and S0 is the initial interior matrices of the positive semi-definite programming.