The Bloody Chamber is the most famous and critical masterpiece by Angela Cater. According to the writer Marina War-ner,"it's about desire and its destruction, the self-immolation of women, how women collude a...The Bloody Chamber is the most famous and critical masterpiece by Angela Cater. According to the writer Marina War-ner,"it's about desire and its destruction, the self-immolation of women, how women collude and connive with their condition of enslavement."Feminism in Angela Cater's view may seem extremely radical at first glance, especially in such an unorthodox Gothic tale filled with blood, murders and sexuality. However, beneath the surface conceal rational reflections on the irrational"fe-male mythology, which is the result ofa long-term ideological indoctrination in the patriarchal society. Many women try to find their identity in this patriarchy centered social norms and regard men's affirmation as the source of happiness. They have built their self-awareness unconsciously catering to males'needs.This article is going to demonstrate another pattern of women's self-aware-ness establishment process in Angela Cater 's conception, via analyzing the functions of a kind of specific symbols in the story—mirrors, which reflect the expected female images through different perspectives.展开更多
Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic proce...Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.展开更多
Some of the up-to-date experimental results on the parametrically-excited solitons in arectangular trough of water are provided, including the periodical reflection of a soliton at an end wall of a trough, the collisi...Some of the up-to-date experimental results on the parametrically-excited solitons in arectangular trough of water are provided, including the periodical reflection of a soliton at an end wall of a trough, the collision dynamics of two solitons of like polarity and the existence of mirror effect at boundaries. Attempts are made to explain the observed phenomena and a conception of virtual solitons is proposed.展开更多
The retina,as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments.During the last decade is becoming clear that unilateral lesions in ...The retina,as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments.During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site.This effect has been better studied in the visual system where,as a rule,one retina is used as experimental and the other as control.Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation.The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review,focusing primarily on the visual system.展开更多
Alfvnic gap eigenmode(AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this ei...Alfvnic gap eigenmode(AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth(or modulation factor)of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg’s effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant(inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length.展开更多
We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity ...We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity with two gain media can be regarded as a linear resonator with one effective combined gain (ECG), and we procure a theoretical model of the ECG and deduce its exact analytical expression. When the two branch gains are close to each other; the combined gain can be reduced to their product; and the simplified presentation of ECG has been demonstrated. The combined output power which directly reflects the small signal ECG of the four-mirror cavity is studied experimentally; and the results are in good agreement with the theoretical ones.展开更多
Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeyc...Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeycomb core is used in applications requiring sandwich construction with fiber-reinforced composite facesheets. However, the use of a fiber-reinforced composite core offers the potential for even lower weight, increased stiffness and strength, low thermal distortion compatible with that of the facesheets, the absence of galvanic corrosion and the ability to readily modify the core properties to suit specialized needs. Furthermore, the material of the core itself will exhibit anisotropic material properties in this case. In order to design, analyze and optimize these structures, knowledge of the effective mechanical properties of the core is essential. In this paper, the effective three-dimensional mechanical properties of a composite hexagonal cell core are determined using a numerical method based on a finite element analysis of a representative unit cell. In particular, the geometry of the simplest repeating unit of the core as well as the appropriate loading and boundary conditions that must be applied is presented.展开更多
针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平...针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。展开更多
文摘The Bloody Chamber is the most famous and critical masterpiece by Angela Cater. According to the writer Marina War-ner,"it's about desire and its destruction, the self-immolation of women, how women collude and connive with their condition of enslavement."Feminism in Angela Cater's view may seem extremely radical at first glance, especially in such an unorthodox Gothic tale filled with blood, murders and sexuality. However, beneath the surface conceal rational reflections on the irrational"fe-male mythology, which is the result ofa long-term ideological indoctrination in the patriarchal society. Many women try to find their identity in this patriarchy centered social norms and regard men's affirmation as the source of happiness. They have built their self-awareness unconsciously catering to males'needs.This article is going to demonstrate another pattern of women's self-aware-ness establishment process in Angela Cater 's conception, via analyzing the functions of a kind of specific symbols in the story—mirrors, which reflect the expected female images through different perspectives.
基金supported by Changjiang Scholars and Innovative Research Team in University of China (PCSIRT)(No.IRT0520)National Natural Science Foundation of China (No.60671012)
文摘Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.
基金Project supported by the National Natural Science Foundation of China and the Youth Foundation of Nanjing University.
文摘Some of the up-to-date experimental results on the parametrically-excited solitons in arectangular trough of water are provided, including the periodical reflection of a soliton at an end wall of a trough, the collision dynamics of two solitons of like polarity and the existence of mirror effect at boundaries. Attempts are made to explain the observed phenomena and a conception of virtual solitons is proposed.
基金supported by the Spanish Ministry of Economy and Competitiveness,Instituto de Salud Carlos III,Fondo Europeo de Desarrollo Regional“Una manera de hacer Europa”(PI19/00071[to MAB],PID2019-106498GB-I00[to MVS],RD16/0008/0026[to MVS]and RD16/0008/0016[to MVS])the Fundación Séneca,Agencia de Ciencia y Tecnología Región de Murcia(19881/GERM/15)(to MVS).
文摘The retina,as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments.During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site.This effect has been better studied in the visual system where,as a rule,one retina is used as experimental and the other as control.Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation.The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review,focusing primarily on the visual system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405271,11372104,75121543,11332013,11372363,and 11502037)
文摘Alfvnic gap eigenmode(AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth(or modulation factor)of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg’s effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant(inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length.
文摘We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity with two gain media can be regarded as a linear resonator with one effective combined gain (ECG), and we procure a theoretical model of the ECG and deduce its exact analytical expression. When the two branch gains are close to each other; the combined gain can be reduced to their product; and the simplified presentation of ECG has been demonstrated. The combined output power which directly reflects the small signal ECG of the four-mirror cavity is studied experimentally; and the results are in good agreement with the theoretical ones.
文摘Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeycomb core is used in applications requiring sandwich construction with fiber-reinforced composite facesheets. However, the use of a fiber-reinforced composite core offers the potential for even lower weight, increased stiffness and strength, low thermal distortion compatible with that of the facesheets, the absence of galvanic corrosion and the ability to readily modify the core properties to suit specialized needs. Furthermore, the material of the core itself will exhibit anisotropic material properties in this case. In order to design, analyze and optimize these structures, knowledge of the effective mechanical properties of the core is essential. In this paper, the effective three-dimensional mechanical properties of a composite hexagonal cell core are determined using a numerical method based on a finite element analysis of a representative unit cell. In particular, the geometry of the simplest repeating unit of the core as well as the appropriate loading and boundary conditions that must be applied is presented.