Studies on the miscibility of PHB/PELA blends showed that PHB and PELA were miscible in amorphous state.The crystallization behavior of PHB in the blend was strongly de- pendent on the addition of PELA component.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/...Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.展开更多
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and opti...The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.展开更多
In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile t...In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.展开更多
The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature....The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (x) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.展开更多
The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission...The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.展开更多
The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and cry...The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and crystal structure of b-PES/PVPh blends were investigated in detail. PVPh was miscible with b-PES over the whole compositions as evidenced by the single composition dependent glass transition temperature. Double melting behavior occurred in neat b-PES and b-PES/PVPh 85/15 blend after isothermal melt crystallization, which may be explained by the melting, recrystallization, and remelting mechanism. In addition, the depression of equilibrium melting point of an 85/15 blend was also found, confirming again the miscibility between the two components. The addition of PVPh caused the decrease of nucleation density and crystal growth rates of b-PES spherulites in the blend. The crystal structure of b- PES was unchanged before and after blending;moreover, the crystallinity of b-PES decreased slightly in the blend.展开更多
Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obt...Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.展开更多
A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifie...A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.展开更多
X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of differ...X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.展开更多
A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morpho...A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.展开更多
The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacia...The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacial modifer significantly improved the mechanical properties, influenced the dynamic mechanical spectra and slightly changed the crystallization behavior. The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.展开更多
The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewate...The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewater. However, the process has not been extensively applied in industry due to its high synthesis temperature. In this paper, the feasibility of chromite synthesis at room temperature was comprehensively studied. The effects of critical factors on the effluent quality and the crystallization behavior and stability of the synthetic products were investigated. Results showed that the removal ratio of chromium from wastewater was over 99.0%, and the chromium concentration in the supernatant reached the sewage discharge standard after undergoing the ferrite process at room temperature. Increases in the aeration rate, stirring rate, and reaction time were favorable for the formation of stable chromite. The particles obtained by the ferrite process at room temperature were characterized by a compact structure, and the maximum size of the particles reached 52 μm. Chromium gradually entered the spinel crystal structure during the synthesis process, and the molecular formula of the synthetic chromite might be Fe3-xCrxO4, in which x was approximately 0.30. The path of the microscopic reaction was proposed to illuminate the synthesis mechanism of chromite under room temperature conditions. The present study has laid the foundation for the industrial application of the ferrite process in the purification and utilization of chromium-containing wastewater.展开更多
The effects of 5%Ni addition on the glass forming ability,thermal stability and crystallization behavior of Mg65Cu25Tb10 bulk metallic glass were investigated using X-ray diffractometry,differential scanning calorimet...The effects of 5%Ni addition on the glass forming ability,thermal stability and crystallization behavior of Mg65Cu25Tb10 bulk metallic glass were investigated using X-ray diffractometry,differential scanning calorimetry and transmission electron microscopy.The small amount of Ni addition reduces the glass forming ability and thermal stability due to a significant decrease in the crystallization activation energy.Analyses of crystallization kinetics give evidence to the existence of quenched-in nuclei in amorphous Mg65Cu20Ni5Tb10.Final crystallization products are basically same for Mg65Cu25Tb10 and Mg65Cu20Ni5Tb10.展开更多
Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this c...Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this composition thepolypropylene has been found to be soluble in linear low density polyethylene but insoluble in high, low and very lowdensity polyethylenes. The miscibility has been concluded from the crystallization kinetics and polarised optical microscopywith a hot stage. Polyethylene-polyethylene blends have been formed from polymers with similar average branching contentbut where they have different melting temperatures. Important consequences are to introduce long branches into apolyethylene that only has short branches, and to modify the morphology of a polyethylenes so that haze, gloss and strainhardening are improved. Polyethylene blends must be developed after careful consideration of the branch content anddistribution within each of the constituents. It is not sufficient to simply blend polyethylenes, with the desired range ofproperties, without regard to the miscibility of the blend composition.展开更多
High-energy density dielectrics for electrostatic capacitors are in urgent demand for advanced electronics and electrical power systems.Poly(vinylidene fluoride)(PVDF)based nanocomposites have attracted remarkable att...High-energy density dielectrics for electrostatic capacitors are in urgent demand for advanced electronics and electrical power systems.Poly(vinylidene fluoride)(PVDF)based nanocomposites have attracted remarkable attention by intrinsic high polarization,flexibility,low density,and outstanding processability.However,it is still challenging to achieve significant improvement in energy density due to the common contradictions between electric polarization and breakdown strength.Here,we proposed a novel facile strategy that simultaneously achieves the construction of in-plane oriented BaTiO3 nanowires and crystallization modulation of PVDF matrix via an in-situ uniaxial stretch process.The polar phase transition and enhanced Young's modulus facilitate the synergetic improvement of electric polarization and voltage endurance capability for PVDF matrix.Additionally,the aligned distribution of nanowires could reduce the contact probability of nanowire tips,thus alleviating electric field concentration and hindering the conductive path.Finally,a record high energy density of 38.3 J/cm3 and 40.9 J/cm3 are achieved for single layer and optimized sandwich-structured nanocomposite,respectively.This work provides a unique structural design and universal method for dielectric nanocomposites with ultrahigh energy density,which presents a promising prospect of practical application for modern energy storage systems.展开更多
For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,bu...For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,but did not investigate in detail.In this study,the L-poly(lactic acid)/polypropylene(PLLA/PP)blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated.Results showed that the crystalline structures of PLLA and PP were not altered by the composition.For the crystallization of PLLA,both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals.For the crystallization of PP,its crystallization rate was depressed under the existence of amorphous PLLA molecular chains.When the PP crystallized from the existence of PLLA crystals,although the diffusion rate of PP was reduced by PLLA crystals,the nucleation positions were obviously enhanced,which accelerated the formation of PP crystals.This investigation would supply more basic data for the application of PLLA/PP blend.展开更多
Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the c...Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.展开更多
Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC)...Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC) and optical microscopy (OM). The heterogeneity of OM images and an unchanged glass transition temperature showed that PLLA was immiscible with PTMC. During isothermal crystallization, the crystallization rate of PLLA improved when the PTMC content was low (≤ 20%). However, when the PTMC content was high (≥ 30%), the crystallization rate decreased significantly. The reason of these nonlinear changes in crystal kinetics was analyzed according to the nucleation and growth process by virtue of a microscope heating stage. The isothermal crystallization morphologies of the blends were also studied by polarized optical microscopy and the results confirmed the conclusions obtained from crystallization kinetics.展开更多
Cross-linked PEG-based copolymers were obtained via synthesis of polyethylene glycol (PEG) and methoxy polyethylene glycol (MPEG) by the bridging and/or cross-linking agent of 2,4-tolylene diisocyanate (TDI) and...Cross-linked PEG-based copolymers were obtained via synthesis of polyethylene glycol (PEG) and methoxy polyethylene glycol (MPEG) by the bridging and/or cross-linking agent of 2,4-tolylene diisocyanate (TDI) and/or hexamethylene-l,6-diisocyanate homopolymer (HDI trimer). The effects on the crystallization behaviors of the samples could be found with the changes in molecular weight of MC-PEG and molecular weight of SC-PEG in certain cross-linked density. It is revealed that the samples appear not to crystallize when the molecular weight of MC-PEG and SC-PEG are 1000 g/mol or less than that. The samples begin to crystallize when the molecular weight of either MC-PEG or SC-PEG reaches 2000 g/mol. The crystallinity of crystallized MC-PEG decreases with the increasing molecular weight of uncrystallized SC-PEG and the crystallinity of crystallized SC-PEG declines with the rise of molecular weight of uncrystallizable MC-PEG. The chains of SC-PEG (M_n = 2000 g/mol) can fold and align easilier than those of MC-PEG (M_n = 2000 g/mol), when the content of PEG is the same.展开更多
基金The project was supported by the National Natural Science Foundation of China.
文摘Studies on the miscibility of PHB/PELA blends showed that PHB and PELA were miscible in amorphous state.The crystallization behavior of PHB in the blend was strongly de- pendent on the addition of PELA component.
基金The National Natural Science Foundation of China (No. 20374032) and Tianjin Science and Technology Key Project (No. 05YFSZSF02200)
文摘Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.
基金ACKNOWLEDGMENT This work was supported by the Key Science Foundation of Education Ministry of China and the Anhui Science Foundation.
文摘The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.
基金This work was supported by the National Natural Science Foundation of China(Nos.270274049 and 220374051).
文摘In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.
文摘The miscibility and phase behavior of the blends of polyoxymethylene (POM)/Novolak were investigated by the cloud point method, which showed that the POM/Novolak blends exhibited a lower critical solution temperature. The melting point of POM decreased when diluted with Novolak. From the melting temperature depression of POM, a negative interaction parameter (x) between POM and Novolak was obtained. The IR spectrum revealed that the miscibility between POM and Novolak was caused by the specific interaction between the OH groups of Novolak and the ether oxygen atoms of POM. The morphology of the blends investigated by polarized light microscopy showed that the size of spherulites of POM was sharply decreased by its mixing with Novolak. This suggests that Novolak be used as a compatibilizer for POM.
基金the National Natural Science Foundation of China (50571052)
文摘The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.
基金financially supported by the National Natural Science Foundation of China (No. 51573016)
文摘The blends of novel branched poly(ethylene succinate)(b-PES) and poly(vinyl phenol)(PVPh) were prepared v ia a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and crystal structure of b-PES/PVPh blends were investigated in detail. PVPh was miscible with b-PES over the whole compositions as evidenced by the single composition dependent glass transition temperature. Double melting behavior occurred in neat b-PES and b-PES/PVPh 85/15 blend after isothermal melt crystallization, which may be explained by the melting, recrystallization, and remelting mechanism. In addition, the depression of equilibrium melting point of an 85/15 blend was also found, confirming again the miscibility between the two components. The addition of PVPh caused the decrease of nucleation density and crystal growth rates of b-PES spherulites in the blend. The crystal structure of b- PES was unchanged before and after blending;moreover, the crystallinity of b-PES decreased slightly in the blend.
基金the National Natural Science Foundation of China(Grant No.50025204) the National Hi—Tech R&D Program of China.
文摘Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.
基金Funded by the Natural Science Foundation of Liaoning Province of China(No.20180550432)Natural Science Foundation for Young Doctoral Research(No.2020-BS-158)Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education(No.LJKQZ2021060)。
文摘A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.
文摘X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.
文摘A binary alloy consisting of poly(phenylene-sulfide) (PPS)/poly(ethylene terephthalate-co-l,4- cyclohexanedimethanol) (PETG) was prepared by the melt blending technology using a twin-screw extruder. The morphology and crystallization behavior of the alloy material were investigated by means of SEM, POM and DSC. The SEM study of the alloy samples revealed that PPS and PETG comprised an incompatible system and the interface structure of two phases could be observed distinctly when the composition of the binary alloy was being changed. The POM results had revealed that incorporation of PETG into PPS could lead to formation of larger spherulite crystals in the course of PPS crystallization, but small and grainy spherulite crystals appeared with further increase in the PETG concentration. The DSC analyses revealed that addition of PETG to the alloy composition could shift the PPS crystallization temperature towards the high-temperature region.
基金This work was supported by a Fund for Young Scientist from the National Advanced Materials Committee of China(NAMCC)
文摘The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper. It was found that the interfacial modifer significantly improved the mechanical properties, influenced the dynamic mechanical spectra and slightly changed the crystallization behavior. The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.
基金National Natural Science Foundation of China (51904129)the Basic Research Project of Yunnan Province (202001AU070028)the Foundation of Yunnan’s Education Ministry,China (2019J0037) for financial support
文摘The ferrite process can not only purify wastewater containing heavy metal ions but also recycle valuable metals from wastewater. Therefore, it is considered a promising technology to treat chromiumcontaining wastewater. However, the process has not been extensively applied in industry due to its high synthesis temperature. In this paper, the feasibility of chromite synthesis at room temperature was comprehensively studied. The effects of critical factors on the effluent quality and the crystallization behavior and stability of the synthetic products were investigated. Results showed that the removal ratio of chromium from wastewater was over 99.0%, and the chromium concentration in the supernatant reached the sewage discharge standard after undergoing the ferrite process at room temperature. Increases in the aeration rate, stirring rate, and reaction time were favorable for the formation of stable chromite. The particles obtained by the ferrite process at room temperature were characterized by a compact structure, and the maximum size of the particles reached 52 μm. Chromium gradually entered the spinel crystal structure during the synthesis process, and the molecular formula of the synthetic chromite might be Fe3-xCrxO4, in which x was approximately 0.30. The path of the microscopic reaction was proposed to illuminate the synthesis mechanism of chromite under room temperature conditions. The present study has laid the foundation for the industrial application of the ferrite process in the purification and utilization of chromium-containing wastewater.
基金Projects(50601011,50432020) supported by the National Natural Science Foundation of ChinaProject(A2720060295) supported by the Basic Research Project of National Defense of China+1 种基金Project(BK2006533) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject supported by the New Century Excellent Talents in University Program
文摘The effects of 5%Ni addition on the glass forming ability,thermal stability and crystallization behavior of Mg65Cu25Tb10 bulk metallic glass were investigated using X-ray diffractometry,differential scanning calorimetry and transmission electron microscopy.The small amount of Ni addition reduces the glass forming ability and thermal stability due to a significant decrease in the crystallization activation energy.Analyses of crystallization kinetics give evidence to the existence of quenched-in nuclei in amorphous Mg65Cu20Ni5Tb10.Final crystallization products are basically same for Mg65Cu25Tb10 and Mg65Cu20Ni5Tb10.
文摘Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this composition thepolypropylene has been found to be soluble in linear low density polyethylene but insoluble in high, low and very lowdensity polyethylenes. The miscibility has been concluded from the crystallization kinetics and polarised optical microscopywith a hot stage. Polyethylene-polyethylene blends have been formed from polymers with similar average branching contentbut where they have different melting temperatures. Important consequences are to introduce long branches into apolyethylene that only has short branches, and to modify the morphology of a polyethylenes so that haze, gloss and strainhardening are improved. Polyethylene blends must be developed after careful consideration of the branch content anddistribution within each of the constituents. It is not sufficient to simply blend polyethylenes, with the desired range ofproperties, without regard to the miscibility of the blend composition.
基金the support by National Natural Science Foundation of China(52172265 and 52002404)Excellent Youth Science Foundation of Hunan Province(2022JJ20067)+1 种基金Central South University Innovation-Driven Research Program(2023CXQD010)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘High-energy density dielectrics for electrostatic capacitors are in urgent demand for advanced electronics and electrical power systems.Poly(vinylidene fluoride)(PVDF)based nanocomposites have attracted remarkable attention by intrinsic high polarization,flexibility,low density,and outstanding processability.However,it is still challenging to achieve significant improvement in energy density due to the common contradictions between electric polarization and breakdown strength.Here,we proposed a novel facile strategy that simultaneously achieves the construction of in-plane oriented BaTiO3 nanowires and crystallization modulation of PVDF matrix via an in-situ uniaxial stretch process.The polar phase transition and enhanced Young's modulus facilitate the synergetic improvement of electric polarization and voltage endurance capability for PVDF matrix.Additionally,the aligned distribution of nanowires could reduce the contact probability of nanowire tips,thus alleviating electric field concentration and hindering the conductive path.Finally,a record high energy density of 38.3 J/cm3 and 40.9 J/cm3 are achieved for single layer and optimized sandwich-structured nanocomposite,respectively.This work provides a unique structural design and universal method for dielectric nanocomposites with ultrahigh energy density,which presents a promising prospect of practical application for modern energy storage systems.
基金supported by the National Natural Science Foundation of China(Nos.51403089 and 21574060)the Major Special Projects of Jiangxi Provincial Department of Science and Technology(No.20114ABF05100)+3 种基金the Project of Jiangxi Provincial Department of Education(No.GJJ170229)the China Postdoctoral Science Foundation(No.2019M652282)the Postdoctoral Science Foundation of Jiangxi Province(No.2018KY37)the Technology Plan Landing Project of Jiangxi Provincial Department of Education(No.GCJ2011-243).
文摘For a polymer/polymer dismissible blend with two crystallizable components,the crystallization behavior of different components and the reciprocal influences between different crystals are interesting and important,but did not investigate in detail.In this study,the L-poly(lactic acid)/polypropylene(PLLA/PP)blends with different weight ratios were prepared by melt mixing and the crystallization behavior of the blends were investigated.Results showed that the crystalline structures of PLLA and PP were not altered by the composition.For the crystallization of PLLA,both the diffusion of chain segments and crystallization rate were enhanced under the existence of PP crystals.For the crystallization of PP,its crystallization rate was depressed under the existence of amorphous PLLA molecular chains.When the PP crystallized from the existence of PLLA crystals,although the diffusion rate of PP was reduced by PLLA crystals,the nucleation positions were obviously enhanced,which accelerated the formation of PP crystals.This investigation would supply more basic data for the application of PLLA/PP blend.
基金supported by the National Natural Science Foundation of China(Nos.U21A2063,52372071,52002376,and 52302076)the National Key R&D Program of China(No.2021YFB3702300)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC2002018)the International Partnership Program of the Chinese Academy of Sciences(No.172GJHZ2022094FN).
文摘Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.
基金financially supported by the Shandong Province High School Science & Technology Fund Planning Project(No.J13LA52)
文摘Miscibility, isothermal crystallization kinetics, and morphology of poly(L-lactide)/poly(trimethylene carbonate) (PLLA/PTMC) crystalline/amorphous blends were studied by differential scanning calorimetry (DSC) and optical microscopy (OM). The heterogeneity of OM images and an unchanged glass transition temperature showed that PLLA was immiscible with PTMC. During isothermal crystallization, the crystallization rate of PLLA improved when the PTMC content was low (≤ 20%). However, when the PTMC content was high (≥ 30%), the crystallization rate decreased significantly. The reason of these nonlinear changes in crystal kinetics was analyzed according to the nucleation and growth process by virtue of a microscope heating stage. The isothermal crystallization morphologies of the blends were also studied by polarized optical microscopy and the results confirmed the conclusions obtained from crystallization kinetics.
基金financially supported by the National Natural Science Foundation of China(Nos.51173130,21374077 and 51573131)
文摘Cross-linked PEG-based copolymers were obtained via synthesis of polyethylene glycol (PEG) and methoxy polyethylene glycol (MPEG) by the bridging and/or cross-linking agent of 2,4-tolylene diisocyanate (TDI) and/or hexamethylene-l,6-diisocyanate homopolymer (HDI trimer). The effects on the crystallization behaviors of the samples could be found with the changes in molecular weight of MC-PEG and molecular weight of SC-PEG in certain cross-linked density. It is revealed that the samples appear not to crystallize when the molecular weight of MC-PEG and SC-PEG are 1000 g/mol or less than that. The samples begin to crystallize when the molecular weight of either MC-PEG or SC-PEG reaches 2000 g/mol. The crystallinity of crystallized MC-PEG decreases with the increasing molecular weight of uncrystallized SC-PEG and the crystallinity of crystallized SC-PEG declines with the rise of molecular weight of uncrystallizable MC-PEG. The chains of SC-PEG (M_n = 2000 g/mol) can fold and align easilier than those of MC-PEG (M_n = 2000 g/mol), when the content of PEG is the same.