The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (ph...The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.展开更多
Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Sat...Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.展开更多
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili...The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.展开更多
Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include...Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are st...The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are still in varying degrees of difficulties and bottlenecks.How to quickly achieve self-breakthrough and devote themselves to realizing the dream of serving the country and education is a higher requirement for college teachers at the national level.展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
The Chinese Recorder and Missionary Journal is one of the most valued English literature in China’s history of Christianity and the key publications of missionaries from the second half of the 19th Century to the fir...The Chinese Recorder and Missionary Journal is one of the most valued English literature in China’s history of Christianity and the key publications of missionaries from the second half of the 19th Century to the first half of the 20th Century.The advertisements in it have not been properly stressed by the academic world,most of which are even deleted in the bound volumes.This paper aims to give a preliminary study on the advertisements in Chinese Recorder and Missionary Journal,comparing and analyzing advertisers,slogans and text structures and appeal methods of advertisements of shipping,banking,schools and book introduction in Chinese Recorder and Missionary Journal,thus demonstrating its significance in China’s modern advertising industry and Sino-western commercial trade and cultural exchange.展开更多
Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2...Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2-D (horizontal) path arrangement problem. By modeling the antiaircraft threat, the UAV mission planning can be mapped to the traveling seaman problem (TSP). A new algorithm is presented to solve the TSP. The algorithm combines the traditional ant colony system (ACS) with particle swarm optimization (PSO), thus being called the AC-PSO algorithm. It uses one by one tour building strategy like ACS to determine that the target point can be chosen like PSO. Experiments show that AC-PSO synthesizes both ACS and PSO and obtains excellent solution of the UAV mission planning with a higher accuracy.展开更多
Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the mod...Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.展开更多
Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space e...Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.展开更多
A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phas...A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phased mission systems( PMS). The simulation strategy of GMS based on a Petri net and Monte Carlo method was presented which had broad applicability. Finally,the GMS and Birnbaum's sensitivity of components in a PMS example were compared. The GMS of component is demonstrated to be more adaptable to reflect the component mission sensitivity when the rated reliability parameters of components cannot be obtained, and components have state dependency or the system is subjected to common cause failure.展开更多
In the northwest of Shandong Province during Late Qing Dynasty,the struggle for survival among the villagers became social norm due to the fragility of the natural ecology,which was not only an important cause of loca...In the northwest of Shandong Province during Late Qing Dynasty,the struggle for survival among the villagers became social norm due to the fragility of the natural ecology,which was not only an important cause of local social unrest,but also complicated social relations.The potential anti-government tendencies of folk secret sects made them the targets of Qing government’s crackdown.In order to seek survival and development,the folk secret sects in northwest Shandong turned their eyes to Christian churches for political protect that was North China Mission of the American Board of Commissioners for Foreign Missions.With the help of secret sects,missionaries of the North China Mission gained a foothold in northwest Shandong.But they were not willing to provide political protect for secret sects.They only used the social ties of secret sects to wedge themselves into the rural society of northwest Shandong,hoping to establish Christian mission stations and develop Christian communities,not to integrate with secret sects.展开更多
Chang'e-2, Chinese second lunar probe, was inserted into a 100 km altitude low lunar orbit on October 9th, 2010, its purpose is to continuously photograph the lunar surface and possibly chosen landing sites for futur...Chang'e-2, Chinese second lunar probe, was inserted into a 100 km altitude low lunar orbit on October 9th, 2010, its purpose is to continuously photograph the lunar surface and possibly chosen landing sites for future lunar missions. The probe will still carry considerable amount of propellant after completing all prescribed tasks in about six months. After the successful launch of Chang'e-2, we began designing the probe's subsequent flight scenario, considering a total impulse of 1 100 m/s for takeoff from low lunar orbit and a maximum 3× 10^6 km distance for Earth-probe telecom- munication. Our first-round effort proposed a preliminary flight scenario that involves consecutive arrivals at the halo orbits around the Earth-Moon L1/L2 and Sun-Earth L1/L2 points, near-Earth asteroid flyby, Earth return, and lunar impact. The designed solution of Chang'e-2's subsequent flight scenario is a multi-segment flight trajectory that serves as a reference for making the final decision on Chang'e-2's extended mission, which is a flight to the Sun-Earth L2 point, and a possible scheme of lunar impact via Earth flyby after remaining at the Sun-Earth L2 point was also presented. The proposed flight trajectory, which possesses acceptable solution accuracy for mission analysis, is a novel design that effectively exploits the invariant manifolds in the circular restricted three-body problem and the patched-manifold-conic method.展开更多
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.展开更多
Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of t...Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of task environment greatly increase the complexity and difficulty of the UAV swarm cooperative search-attack mission planning problem.Inspired by the collaborative hunting behavior of wolf pack,a distributed selforganizing method for UAV swarm search-attack mission planning is proposed.First,to solve the multi-target search problem in unknown environments,a wolf scouting behavior-inspired cooperative search algorithm for UAV swarm is designed.Second,a distributed self-organizing task allocation algorithm for UAV swarm cooperative attacking of targets is proposed by analyzing the flexible labor division behavior of wolves.By abstracting the UAV as a simple artificial wolf agent,the flexible motion planning and group task coordinating for UAV swarm can be realized by self-organizing.The effectiveness of the proposed method is verified by a set of simulation experiments,the stability and scalability are evaluated,and the integrated solution for the coupled path planning and task allocation problems for the UAV swarm cooperative search-attack task can be well performed.展开更多
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.
文摘Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.
基金supported by the National Natural Science Foundation of China(72101270,72001213).
文摘The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
文摘Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
文摘The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are still in varying degrees of difficulties and bottlenecks.How to quickly achieve self-breakthrough and devote themselves to realizing the dream of serving the country and education is a higher requirement for college teachers at the national level.
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.
基金funded by the project“Translation of and Research on Sinology Literature in English newspapers in China(19JDZD04)”by Guangdong University of Foreign Studies.
文摘The Chinese Recorder and Missionary Journal is one of the most valued English literature in China’s history of Christianity and the key publications of missionaries from the second half of the 19th Century to the first half of the 20th Century.The advertisements in it have not been properly stressed by the academic world,most of which are even deleted in the bound volumes.This paper aims to give a preliminary study on the advertisements in Chinese Recorder and Missionary Journal,comparing and analyzing advertisers,slogans and text structures and appeal methods of advertisements of shipping,banking,schools and book introduction in Chinese Recorder and Missionary Journal,thus demonstrating its significance in China’s modern advertising industry and Sino-western commercial trade and cultural exchange.
文摘Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2-D (horizontal) path arrangement problem. By modeling the antiaircraft threat, the UAV mission planning can be mapped to the traveling seaman problem (TSP). A new algorithm is presented to solve the TSP. The algorithm combines the traditional ant colony system (ACS) with particle swarm optimization (PSO), thus being called the AC-PSO algorithm. It uses one by one tour building strategy like ACS to determine that the target point can be chosen like PSO. Experiments show that AC-PSO synthesizes both ACS and PSO and obtains excellent solution of the UAV mission planning with a higher accuracy.
文摘Unmanned aerial vehicle(UAV) resource scheduling means to allocate and aggregate the available UAV resources depending on the mission requirements and the battlefield situation assessment.In previous studies,the models cannot reflect the mission synchronization;the targets are treated respectively,which results in the large scale of the problem and high computational complexity.To overcome these disadvantages,a model for UAV resource scheduling under mission synchronization is proposed,which is based on single-objective non-linear integer programming.And several cooperative teams are aggregated for the target clusters from the available resources.The evaluation indices of weapon allocation are referenced in establishing the objective function and the constraints for the issue.The scales of the target clusters are considered as the constraints for the scales of the cooperative teams to make them match in scale.The functions of the intersection between the "mission time-window" and the UAV "arrival time-window" are introduced into the objective function and the constraints in order to describe the mission synchronization effectively.The results demonstrate that the proposed expanded model can meet the requirement of mission synchronization,guide the aggregation of cooperative teams for the target clusters and control the scale of the problem effectively.
基金Supported by the National Natural Science Foundation of China(11572037)
文摘Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.
基金National Natural Science Foundation of China(No.71071159)
文摘A comprehensive mission sensitivity analysis index based on Sobol's index called global mission sensitivity( GMS) was proposed in this paper which focused on analyzing the mission sensitivity of components of phased mission systems( PMS). The simulation strategy of GMS based on a Petri net and Monte Carlo method was presented which had broad applicability. Finally,the GMS and Birnbaum's sensitivity of components in a PMS example were compared. The GMS of component is demonstrated to be more adaptable to reflect the component mission sensitivity when the rated reliability parameters of components cannot be obtained, and components have state dependency or the system is subjected to common cause failure.
文摘In the northwest of Shandong Province during Late Qing Dynasty,the struggle for survival among the villagers became social norm due to the fragility of the natural ecology,which was not only an important cause of local social unrest,but also complicated social relations.The potential anti-government tendencies of folk secret sects made them the targets of Qing government’s crackdown.In order to seek survival and development,the folk secret sects in northwest Shandong turned their eyes to Christian churches for political protect that was North China Mission of the American Board of Commissioners for Foreign Missions.With the help of secret sects,missionaries of the North China Mission gained a foothold in northwest Shandong.But they were not willing to provide political protect for secret sects.They only used the social ties of secret sects to wedge themselves into the rural society of northwest Shandong,hoping to establish Christian mission stations and develop Christian communities,not to integrate with secret sects.
基金supported by the State Key Laboratory of Astronautic Dynamics (2011ADL-DW0202)
文摘Chang'e-2, Chinese second lunar probe, was inserted into a 100 km altitude low lunar orbit on October 9th, 2010, its purpose is to continuously photograph the lunar surface and possibly chosen landing sites for future lunar missions. The probe will still carry considerable amount of propellant after completing all prescribed tasks in about six months. After the successful launch of Chang'e-2, we began designing the probe's subsequent flight scenario, considering a total impulse of 1 100 m/s for takeoff from low lunar orbit and a maximum 3× 10^6 km distance for Earth-probe telecom- munication. Our first-round effort proposed a preliminary flight scenario that involves consecutive arrivals at the halo orbits around the Earth-Moon L1/L2 and Sun-Earth L1/L2 points, near-Earth asteroid flyby, Earth return, and lunar impact. The designed solution of Chang'e-2's subsequent flight scenario is a multi-segment flight trajectory that serves as a reference for making the final decision on Chang'e-2's extended mission, which is a flight to the Sun-Earth L2 point, and a possible scheme of lunar impact via Earth flyby after remaining at the Sun-Earth L2 point was also presented. The proposed flight trajectory, which possesses acceptable solution accuracy for mission analysis, is a novel design that effectively exploits the invariant manifolds in the circular restricted three-body problem and the patched-manifold-conic method.
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.
基金supported by the National Natural Science Foundation of China(61502534)the Shaanxi Provincial Natural Science Foundation(2020JQ-493)+2 种基金the Integrative Equipment Research Project of Armed Police Force(WJ20211A030018)the Military Science Project of the National Social Science Fund(WJ2019-SKJJ-C-092)the Theoretical Research Foundation of Armed Police Engineering University(WJY202148)。
文摘Cooperative search-attack is an important application of unmanned aerial vehicle(UAV)swarm in military field.The coupling between path planning and task allocation,the heterogeneity of UAVs,and the dynamic nature of task environment greatly increase the complexity and difficulty of the UAV swarm cooperative search-attack mission planning problem.Inspired by the collaborative hunting behavior of wolf pack,a distributed selforganizing method for UAV swarm search-attack mission planning is proposed.First,to solve the multi-target search problem in unknown environments,a wolf scouting behavior-inspired cooperative search algorithm for UAV swarm is designed.Second,a distributed self-organizing task allocation algorithm for UAV swarm cooperative attacking of targets is proposed by analyzing the flexible labor division behavior of wolves.By abstracting the UAV as a simple artificial wolf agent,the flexible motion planning and group task coordinating for UAV swarm can be realized by self-organizing.The effectiveness of the proposed method is verified by a set of simulation experiments,the stability and scalability are evaluated,and the integrated solution for the coupled path planning and task allocation problems for the UAV swarm cooperative search-attack task can be well performed.