期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deployment of Polar Codes for Mission-Critical Machine-Type Communication Over Wireless Networks
1
作者 Najib Ahmed Mohammed Ali Mohammed Mansoor +1 位作者 Rodina Binti Ahmad Saaidal Razalli Bin Azzuhri 《Computers, Materials & Continua》 SCIE EI 2022年第4期573-592,共20页
Mission critical Machine-type Communication(mcMTC),also referred to as Ultra-reliable Low Latency Communication(URLLC),has become a research hotspot.It is primarily characterized by communication that provides ultra-h... Mission critical Machine-type Communication(mcMTC),also referred to as Ultra-reliable Low Latency Communication(URLLC),has become a research hotspot.It is primarily characterized by communication that provides ultra-high reliability and very low latency to concurrently transmit short commands to a massive number of connected devices.While the reduction in physical(PHY)layer overhead and improvement in channel coding techniques are pivotal in reducing latency and improving reliability,the current wireless standards dedicated to support mcMTC rely heavily on adopting the bottom layers of general-purpose wireless standards and customizing only the upper layers.The mcMTC has a significant technical impact on the design of all layers of the communication protocol stack.In this paper,an innovative bottom-up approach has been proposed for mcMTC applications through PHY layer targeted at improving the transmission reliability by implementing ultra-reliable channel coding scheme in the PHY layer of IEEE 802.11a standard bearing in mind short packet transmission system.To achieve this aim,we analyzed and compared the channel coding performance of convolutional codes(CCs),low-density parity-check(LDPC)codes,and polar codes in wireless network on the condition of short data packet transmission.The Viterbi decoding algorithm(VA),logarithmic belief propagation(Log-BP)algorithm,and cyclic redundancy check(CRC)successive cancellation list(SCL)(CRC-SCL)decoding algorithm were adopted to CC,LDPC codes,and polar codes,respectively.Consequently,a new PHY layer for mcMTC has been proposed.The reliability of the proposed approach has been validated by simulation in terms of Bit error rate(BER)and packet error rate(PER)vs.signal-to-noise ratio(SNR).The simulation results demonstrate that the reliability of IEEE 802.11a standard has been significantly improved to be at PER=10−5 or even better with the implementation of polar codes.The results also show that the general-purpose wireless networks are prominent inproviding short packet mcMTC with the modification needed. 展开更多
关键词 Machine-type communication mission-critical applications MTC URLLC M2M wireless networks polar codes
下载PDF
Fuzzy Self-Adaptation of Mission-Critical Software Under Uncertainty 被引量:7
2
作者 Qi-Liang Yang Jian Lv +3 位作者 Xian-Ping Tao Xiao-Xing Ma Jian-Chun Xing Wei Song 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第1期165-187,共23页
Mission-critical software (MCS) must provide continuous, online services to ensure the successful accomplish- ment of critical missions. Self-adaptation is particularly desirable for assuring the quality of service ... Mission-critical software (MCS) must provide continuous, online services to ensure the successful accomplish- ment of critical missions. Self-adaptation is particularly desirable for assuring the quality of service (QoS) and availability of MCS under uncertainty. Few techniques have insofar addressed the issue of MCS self-adaptation, and most existing approaches to software self-adaptation fail to take into account uncertainty in the self-adaptation loop. To tackle this problem, we propose a fuzzy control based approach, i.e., Software Fuzzy Self-Adaptation (SFSA), with a view to deal with the challenge of MCS self-adaptation under uncertainty. First, we present the SFSA conceptual framework, consisting of sensing, deciding and acting stages, and establish the formal model of SFSA to lay a rigorous and mathematical foundation of our approach. Second, we develop a novel SFSA implementation technology as well as its supporting tool, i.e., the SFSA toolkit, to automate the realization process of SFSA. Finally, we demonstrate the effectiveness of our approach through the development of an adaptive MCS application in process control systems. Validation experiments show that the fuzzy control based approach proposed in this work is effective and with low overheads. 展开更多
关键词 mission-critical software software self-adaptation fuzzy self-adaptation fuzzy control self-adaptation logic weaving
原文传递
Efficient Routing Protection Algorithm in Large-Scale Networks 被引量:3
3
作者 Haijun Geng Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第2期1733-1744,共12页
With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have... With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC. 展开更多
关键词 Large-scale network shortest path tree time complexity network failure real-time and mission-critical applications
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部