The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface feat...Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2) nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.展开更多
Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused s...Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused solely on cooling or heating.Different effects are achieved by applying distinct coatings to each side of the fabric.One graphene oxide(GO)coating exhibits exceptional light-to-heat conversion,absorbing and transforming light energy into heat,thereby elevating fabric temperature by 15.4℃,22.7℃,and 43.7℃ under 0.2,0.5,and 1 sun irradiation,respectively.Conversely,a hydrogel coating on one side absorbs water,facilitating heat dissipation through evaporation upon light exposure,reducing fabric temperature by 5.9℃,8.4℃,and 7.1℃ in 0.2,0.5,and 1 sun irradiation,respectively.Moreover,both sides of Janus fabric exhibit potent antimicrobial properties,ensuring fabric hygiene.This work presents a feasible solution to address crucial challenges in fabric thermal regulation,providing a smart approach for intelligent adjustment of body comfort in both summer and winter.By integrating heating and cooling capabilities along with antimicrobial properties,this study promotes sustainable development in textile techniques.展开更多
The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that thei...The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred ...Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.展开更多
Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, y...Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.展开更多
The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向...随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.展开更多
The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed...The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.展开更多
The paper introduces a new technique for the treatment of the woven fabrics. Sprayed by high pressure water jet, the appearance, handle and stiffness of the fabric are improved. Other properties of the high pressure w...The paper introduces a new technique for the treatment of the woven fabrics. Sprayed by high pressure water jet, the appearance, handle and stiffness of the fabric are improved. Other properties of the high pressure water treated fabrics like drape coefficient, air permeability, tenacity are also presented.展开更多
In this paper,an equation expressing relationship between trapezoid tear strength and fabrictensile properties,weave texture and geomitry of specimen was studied.It could be used to predicttrapezoid tear strength for ...In this paper,an equation expressing relationship between trapezoid tear strength and fabrictensile properties,weave texture and geomitry of specimen was studied.It could be used to predicttrapezoid tear strength for uncoated fabrics well,and also for coated fabrics if multipling a stressconcentration coefficient.The four tear test standard methods(single-rip,double-rip,wing-ripand trapezoid tear)have been adopted to measure the tear strength of fifteen coated fabrics whichwere used for architecture and gencral industrial purposes and the nine corresponding uncoatedfabrics respectively.Analysis and comparison of experimental results showed that there are an ex-cellent correlation between each two methods with the four tear parameters respectively and a goodconsistency of the order of the tear strength for different samples.In addition,the experimental results showed that a good correlation exists between the tenslieproperties and tear strength of coated and uncoated fabrics.展开更多
The bending behavior of woven fabrics under low curva-ture conditions has been analyzed by linear viscoelastictheory.The fabric is assumed to behave viscoelasticallyand to be subjected to frictional restraints in bend...The bending behavior of woven fabrics under low curva-ture conditions has been analyzed by linear viscoelastictheory.The fabric is assumed to behave viscoelasticallyand to be subjected to frictional restraints in bending de-formation.The frictional restraint is considered to beproportional to the curvature and can be described by africtional moment.A model has been constructed by astandard three-element solid model and a paralleledfrictional sliding element.The equations of the model fora cyclic curvature variation are derived.A set of param-eters of the equations for each fabric has been obtainedexperimentally.Predictions of the bending rigidity andhysteresis for wool,cashmere,wool/polyester blended,polyester and cotton fabrics are made,displaying verygood agreement with the experimental observations.展开更多
The film morphology of dodecyl/carboxyl modified polysiloxane(RCAS) on cotton fabric or the silicon wafer was investigated and characterized by field emission scanning electron microscopy(FESEM),atomic force microscop...The film morphology of dodecyl/carboxyl modified polysiloxane(RCAS) on cotton fabric or the silicon wafer was investigated and characterized by field emission scanning electron microscopy(FESEM),atomic force microscope(AFM),and Fourier transform infrared spectrometer(FTIR).Experimental results indicate that RCAS is a good film forming material on different substrates.Relatively smooth film was formed on cotton fabric surface,on which the grooves disappeared.In addition,RCAS formed a micromorphology inhomogeneous and unsmooth film on the silicon wafer.Many high or low bright peaks distributed randomly on the film surface,especially as the field was 2μm×2 μm and the date scale was 5 nm in AFM observation.Then RCAS was emulsified with nonionic surfactant alkyl polyoxyethylene ether in order to achieve a transparent organosilicon emulsion-RCAS emulsion(RCSE),which possessed good stability.The properties of RCSE and its application performance on cotton fabrics were investigated and characterized by transmission electron microscope(TEM),particle size analysis,and voltage test instrument.The results show that the average particle size of RCAS emulsion is 28.32 nm,while the ζ voltage is-37.88 mV.Compared with untreatd cotton fabric,the softness of treated fabric can be improved with RCSE to a certain extent.At the same time,the fabric treated with RCSE acquires unique fluffy and soft handle.展开更多
Wet permeability of fibrous assembly is mainly influenced by the properties of liquid and the configurations of the fiber which consist of diameter of fiber, twist angle and fiber alignment in a yarn. It can be seen f...Wet permeability of fibrous assembly is mainly influenced by the properties of liquid and the configurations of the fiber which consist of diameter of fiber, twist angle and fiber alignment in a yarn. It can be seen from experimental results that the knitted fabric made of soybean (SB) fiber has goodproperties both in wet permeability and vapor transmission so that the knitting technology and fabric characteristics can be improved.展开更多
The distribution of the light reflected from various fabric surfaces was studied. A series of samples of different fibers, weaves and colors were investigated. The experiments show that the goniophotometric curves of ...The distribution of the light reflected from various fabric surfaces was studied. A series of samples of different fibers, weaves and colors were investigated. The experiments show that the goniophotometric curves of fabrics change with constituent fibers, weave, dyeing and finishing, and experimental condition.The goniophotometric curves for fabrics of same kind with different colors are same in general shape, and the reflectance or the height of the curves are changed to the extent of that they are in proportion with the brightness or the tristimulus value Y of the samples. The goniophotometric curve also varies in form when the incident angle is changed. Discussion and explanation for the above mentioned are given. Luster of the samples was calculated with methods suggested by different indexing systems.展开更多
Butylmethacrylate(BMA) was grafted onto woolen fabrics by microwave Irradiation In the presence of catalyst ((NH4) 4S2O8) .Various parameters of graft- copolyme-rlzation reaction, namely time of reaction, microwave in...Butylmethacrylate(BMA) was grafted onto woolen fabrics by microwave Irradiation In the presence of catalyst ((NH4) 4S2O8) .Various parameters of graft- copolyme-rlzation reaction, namely time of reaction, microwave intensity, catalyst and monomer concentration, were optimized . The graft - copolymerization was also compared with conventional heating graft- copolymerization at the same condition, it showed microwave irradiation could Improve the reactivity of the monomer. The moisture regain decreased as graft add - on increased, the strength of the grafted fabric decreased as graft add - on increased , but the strain increased hi some degree. The infrared spectrum showed an additional peak at 1700 cm-1, confirming ester carbonyl groups of the monomer.展开更多
A theoretical analysis on the two extreme cases of yarn bending rigidity as well as the relationship between them is proposed. The significant influence of fiber-to-fiber interaction on yarn bending rigidity is reveal...A theoretical analysis on the two extreme cases of yarn bending rigidity as well as the relationship between them is proposed. The significant influence of fiber-to-fiber interaction on yarn bending rigidity is revealed.Experimental observation on the relationship between fabric/yarn bending property and fiber fineness, yarn structure, fabric structure is given as we ll. Three problems are discussed and the following conclusion is thus obtained. There exists, similar t0 a rigid engineering rod, a linear relationship between yarn bending rigidity and the square of yarn fineness (expressed as yarn count in tex), but the increasing speed is much lower. Yarn bending rigidity in the fabric also to a great extent depends on the fabric density and yarn twist factor, and so on. Fabric's bending hysteresis primarily depends on its bending rigidity.展开更多
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金supported by the National Natural Science Foundation of China(22372087)the Natural Science Foundation of Shandong Province(ZR2021ME039)+4 种基金the Applied Basic Research Programs of National Textile Industry Federation(J202106)the Newtech Textile Technology Development(Shanghai)Co.,Ltd.,Chinathe Jiangsu New Vison Advanced Functional Fiber Innovation Centersupport from both the Research Centre of Textiles for Future Fashion at The Hong Kong Polytechnic UniversityThe Hong Kong Jockey Club Charities Trust.
文摘Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2) nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties.
基金supported by National Natural Science Foundation of China(21801219)the“Qing-Lan”Project of Jiangsu Province,Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)the start-up fund from Yangzhou University.
文摘Fabric multifunctionality offers resource savings and enhanced human comfort.This study innovatively integrates cooling,heating,and antimicrobial properties within a Janus fabric,surpassing previous research focused solely on cooling or heating.Different effects are achieved by applying distinct coatings to each side of the fabric.One graphene oxide(GO)coating exhibits exceptional light-to-heat conversion,absorbing and transforming light energy into heat,thereby elevating fabric temperature by 15.4℃,22.7℃,and 43.7℃ under 0.2,0.5,and 1 sun irradiation,respectively.Conversely,a hydrogel coating on one side absorbs water,facilitating heat dissipation through evaporation upon light exposure,reducing fabric temperature by 5.9℃,8.4℃,and 7.1℃ in 0.2,0.5,and 1 sun irradiation,respectively.Moreover,both sides of Janus fabric exhibit potent antimicrobial properties,ensuring fabric hygiene.This work presents a feasible solution to address crucial challenges in fabric thermal regulation,providing a smart approach for intelligent adjustment of body comfort in both summer and winter.By integrating heating and cooling capabilities along with antimicrobial properties,this study promotes sustainable development in textile techniques.
基金Fujian External Cooperation Project of Natural Science Foundation,China(No.2022I0042)。
文摘The silk fabrics were matching dyed with three natural edible pigments(red rice red,ginger yellow and gardenia blue).By investigating the dyeing rates and lifting properties of these pigments,it was observed that their compatibilities were excellent in the dyeing process:dye dosage 2.5%(omf),mordant alum dosage 2.0%(omf),dyeing temperature 80℃and dyeing time 40 min.The silk fabrics dyed with secondary colors exhibited vibrant and vivid color owing to the remarkable lightness and chroma of ginger yellow.However,gardenia blue exhibited multiple absorption peaks in the visible light range,resulting in significantly lower lightness and chroma for the silk fabrics dyed with tertiary colors,thus making it suitable only for matte-colored fabrics with low chroma levels.In addition,the silk fabrics dyed with these three pigments had a color fastness that exceeded grade 3 in resistance to perspiration,soap washing and light exposure,indicating acceptable wearing properties.The dyeing process described in this research exhibited a wide range of potential applications in matching dyeing of protein-based textiles with natural colorants.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
文摘Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.
文摘Stitch density is one of the critical quality parameters of knit fabrics. This parameter is closely related to other physical quality parameters like fabric weight, fabric tightness factor, fiber types, blend ratio, yarn diameter and linear density, and fabric structure. Selecting stitch density (wales per inch, course per inch) is essential to getting the appropriate fabric weight and desired quality. Usually, no rules or assumptions exist to get the desired stitch density in the finished fabric stage. Fifteen types of blended knit fabrics were prepared to conduct the study. The varying percentages of cotton, polyester, and elastane are incorporated in the blends. Regression analysis and regression ANOVA tests were done to predict the stitch density of finished fabrics. A suitable regression equation is established to get the desired results. The study also found that the stitch density value in the finished stage fabric decreases by approximately 15% compared to the stitch density in the grey fabric stage. This study will help the fabric manufacturers get the finished fabric stitch density in advance by utilizing the grey fabric stitch density data set. The author expects this research to benefit the knitting and dyeing industry, new researchers, and advanced researchers.
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
文摘随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注.然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展.对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响.提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量.针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制.在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案.Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%.此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.
基金supported by the National Key Basic Research and Development(973) Project (2009CB421001)National Natural Science Foundation of China(40872139)+2 种基金China Geological Survey (1212010661311)Ministry of Land and Resources (200811008)the Ministry of Education,Proiect 111 (B07011)
文摘The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.
文摘The paper introduces a new technique for the treatment of the woven fabrics. Sprayed by high pressure water jet, the appearance, handle and stiffness of the fabric are improved. Other properties of the high pressure water treated fabrics like drape coefficient, air permeability, tenacity are also presented.
文摘In this paper,an equation expressing relationship between trapezoid tear strength and fabrictensile properties,weave texture and geomitry of specimen was studied.It could be used to predicttrapezoid tear strength for uncoated fabrics well,and also for coated fabrics if multipling a stressconcentration coefficient.The four tear test standard methods(single-rip,double-rip,wing-ripand trapezoid tear)have been adopted to measure the tear strength of fifteen coated fabrics whichwere used for architecture and gencral industrial purposes and the nine corresponding uncoatedfabrics respectively.Analysis and comparison of experimental results showed that there are an ex-cellent correlation between each two methods with the four tear parameters respectively and a goodconsistency of the order of the tear strength for different samples.In addition,the experimental results showed that a good correlation exists between the tenslieproperties and tear strength of coated and uncoated fabrics.
文摘The bending behavior of woven fabrics under low curva-ture conditions has been analyzed by linear viscoelastictheory.The fabric is assumed to behave viscoelasticallyand to be subjected to frictional restraints in bending de-formation.The frictional restraint is considered to beproportional to the curvature and can be described by africtional moment.A model has been constructed by astandard three-element solid model and a paralleledfrictional sliding element.The equations of the model fora cyclic curvature variation are derived.A set of param-eters of the equations for each fabric has been obtainedexperimentally.Predictions of the bending rigidity andhysteresis for wool,cashmere,wool/polyester blended,polyester and cotton fabrics are made,displaying verygood agreement with the experimental observations.
基金National Natural Science Foundation of China (No. 50373025)Doctoral Fund of the Ministry of Education of China (No.200807080002)Postgraduate Innovation Foundation of Shaanxi University of Science & Technology,China
文摘The film morphology of dodecyl/carboxyl modified polysiloxane(RCAS) on cotton fabric or the silicon wafer was investigated and characterized by field emission scanning electron microscopy(FESEM),atomic force microscope(AFM),and Fourier transform infrared spectrometer(FTIR).Experimental results indicate that RCAS is a good film forming material on different substrates.Relatively smooth film was formed on cotton fabric surface,on which the grooves disappeared.In addition,RCAS formed a micromorphology inhomogeneous and unsmooth film on the silicon wafer.Many high or low bright peaks distributed randomly on the film surface,especially as the field was 2μm×2 μm and the date scale was 5 nm in AFM observation.Then RCAS was emulsified with nonionic surfactant alkyl polyoxyethylene ether in order to achieve a transparent organosilicon emulsion-RCAS emulsion(RCSE),which possessed good stability.The properties of RCSE and its application performance on cotton fabrics were investigated and characterized by transmission electron microscope(TEM),particle size analysis,and voltage test instrument.The results show that the average particle size of RCAS emulsion is 28.32 nm,while the ζ voltage is-37.88 mV.Compared with untreatd cotton fabric,the softness of treated fabric can be improved with RCSE to a certain extent.At the same time,the fabric treated with RCSE acquires unique fluffy and soft handle.
文摘Wet permeability of fibrous assembly is mainly influenced by the properties of liquid and the configurations of the fiber which consist of diameter of fiber, twist angle and fiber alignment in a yarn. It can be seen from experimental results that the knitted fabric made of soybean (SB) fiber has goodproperties both in wet permeability and vapor transmission so that the knitting technology and fabric characteristics can be improved.
文摘The distribution of the light reflected from various fabric surfaces was studied. A series of samples of different fibers, weaves and colors were investigated. The experiments show that the goniophotometric curves of fabrics change with constituent fibers, weave, dyeing and finishing, and experimental condition.The goniophotometric curves for fabrics of same kind with different colors are same in general shape, and the reflectance or the height of the curves are changed to the extent of that they are in proportion with the brightness or the tristimulus value Y of the samples. The goniophotometric curve also varies in form when the incident angle is changed. Discussion and explanation for the above mentioned are given. Luster of the samples was calculated with methods suggested by different indexing systems.
文摘Butylmethacrylate(BMA) was grafted onto woolen fabrics by microwave Irradiation In the presence of catalyst ((NH4) 4S2O8) .Various parameters of graft- copolyme-rlzation reaction, namely time of reaction, microwave intensity, catalyst and monomer concentration, were optimized . The graft - copolymerization was also compared with conventional heating graft- copolymerization at the same condition, it showed microwave irradiation could Improve the reactivity of the monomer. The moisture regain decreased as graft add - on increased, the strength of the grafted fabric decreased as graft add - on increased , but the strain increased hi some degree. The infrared spectrum showed an additional peak at 1700 cm-1, confirming ester carbonyl groups of the monomer.
文摘A theoretical analysis on the two extreme cases of yarn bending rigidity as well as the relationship between them is proposed. The significant influence of fiber-to-fiber interaction on yarn bending rigidity is revealed.Experimental observation on the relationship between fabric/yarn bending property and fiber fineness, yarn structure, fabric structure is given as we ll. Three problems are discussed and the following conclusion is thus obtained. There exists, similar t0 a rigid engineering rod, a linear relationship between yarn bending rigidity and the square of yarn fineness (expressed as yarn count in tex), but the increasing speed is much lower. Yarn bending rigidity in the fabric also to a great extent depends on the fabric density and yarn twist factor, and so on. Fabric's bending hysteresis primarily depends on its bending rigidity.