An experimental study on mitigation of greenhouse gas (CH4, N2O and NO) emission has been conducted in a typical cropping system of Southeast China for 4 years. By simultaneous measurement, the CH4, N2O and NO emissio...An experimental study on mitigation of greenhouse gas (CH4, N2O and NO) emission has been conducted in a typical cropping system of Southeast China for 4 years. By simultaneous measurement, the CH4, N2O and NO emission fluxes from rice-wheat rotation fields, effects of fertilization, water management, temperature and soil moisture were investigated. Temperature, fertilization and water status were found to be the key factors to regulate CH4, N2O and NO emis-sions. Based on the experimental results, some agricultural measures were recommended as techni-cal options to mitigate greenhouse gas emissions from rice-wheat rotation ecosystems. These miti-gation measures are reducing mineral N input, coupling organic manure with chemical fertilizers, applying fertilizers which release available N slowly during periods with intensive plant activity, and applying dry fermented organic manure and well management of water and fertilizer. Key words Mitigation options - Emission - Greenhouse gases - Ecosystems This study was supported by projects “ Experimental and Modeling Study on N2O Emission from the Rice-Wheat Rotation Fields of Southeast China” and “ Experimental and Modeling Study on NO Emission from Croplands” , which were granted by the National Natural Science Foundation of China, the State Key Fundamental Research Project “ Predicting the Future (20–50 years) Trend of Environmental Change in China”, and the project of Chinese Academy of Sciences “ Theory and Methodology on Air Pollution Prediction”.Thanks are due to Professor Zhang Wen, Dr. Bai Jianhui, Mr. Gong Yanbang, Mrs. Luo Dongmei and Mr. Liu Guangren from the Institute of Atmospheric Physics, Chinese Academy of Sciences for their help in experiments.展开更多
Background:This study investigated greenhouse gas(GHG)emission characteristics of lactating Holstein dairy cows in East China and provided a basis for formulating GHG emission reduction measures.GreenFeed system was u...Background:This study investigated greenhouse gas(GHG)emission characteristics of lactating Holstein dairy cows in East China and provided a basis for formulating GHG emission reduction measures.GreenFeed system was used to measure the amount of methane(CH_(4))and carbon dioxide(CO_(2))emitted by the cows through respiration.Data from a commercial cow farm were used to observe the effects of parity,body weight,milk yield,and milk component yield on CH_(4) and CO_(2) emissions.Results:Mean herd responses throughout the study were as follows:111 cows completed all experimental processes,while 42 cows were rejected because they were sick or had not visited the GreenFeed system 20 times.On average,lactating days of cows was 138±19.04 d,metabolic weight was 136.5±9.5 kg,parity was 2.8±1.0,dry matter intake(DMI)was 23.1±2.6 kg/d,and milk yield was 38.1±6.9 kg/d.The GreenFeed system revealed that CH_(4) production(expressed in CO_(2) equivalent,CO_(2)-eq)was found to be 8304 g/d,CH_(4)_(CO_(2)−eq)/DMI was 359 g/kg,CH_(4)_(CO_(2)−eq)/energy-corrected milk(ECM)was 229.5 g/kg,total CO_(2) production(CH_(4) production plus CO_(2) production)was 19,201 g/d,total CO_(2)/DMI was 831 g/kg,and total CO_(2)/ECM was 531 g/kg.The parity and metabolic weight of cows had no significant effect on total CO_(2) emissions(P>0.05).Cows with high milk yield,milk fat yield,milk protein yield,and total milk solids yield produced more total CO_(2)(P<0.05),but their total CO_(2) production per kg of ECM was low(P<0.05).The total CO_(2)/ECM of the medium and high milk yield groups was 17%and 27%lower than that of the low milk yield group,respectively.Conclusions:The parity and body condition had no effect on total CO_(2) emissions,while the total CO_(2)/ECM was negatively correlated with milk yield,milk fat yield,milk protein yield,and total milk solids yield in lactating Holstein dairy cows.Measurement of total CO_(2) emissions of dairy cows in the Chinese production system will help establish regional or national GHG inventories and develop mitigation approaches to dairy production regimes.展开更多
The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for...The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for further development and utilization of this classical agricultural technique. The effect of reducing methane emission and the economic benefits of rice-duck ecological system were studied by carrying out a field experiment and by using economic methodology. The daily variation of CH4 emission in late rice paddy field was basically consistent with the daily variation of atmospheric temperature. The highest emission occurred at the full tillering stage of late rice with a rate of 24.1 or 32.2 or 40.5 mg m^-2 h^-1 in no-tillage area with duck and no-tillage area without duck and conventional-tillage area without duck, respectively. The inhibition of methane emission was apparently effective in the rice-duck ecological system during the initial tillering stage and the full tillering stage. Compared to the no-tillage area without duck, methane emission decreased by 2.333 g m^-2. Compared to the conventional-tillage area without duck, methane emission decreased by 4.723 g m^-2. During the production period of late rice, the amount of methane emission in no-tillage area with duck was 3.373 g m^-2 lesser than that of no-tillage area without duck, and 5.59 g m^-2 less than that of conventional-tillage without duck area. The economic significance was analyzed. Farmers adopting the rice-duck ecological system obtained 2 166 and 4 207 RMB yuan ha^-1 more income than those who adopted a no-tillage without duck technique or conventional-tillage without duck technique, respectively. In addition to the reduction of the environmental pollution by methane emission, the farmers who adopted the rice-duck ecological system achieved economic benefits of 5 000 RMB yuan ha^-1, which was 2 206 and 4 274 RMB yuan ha^-1 more than those who adopted a no-tillage without duck technique and a conventional-tillage without duck technique, respectively. The rice-duck ecological system not only increased the economic benefits for farmers, but also reduced methane emission in rice paddy field. A sustainable agricultural production mode was formed.展开更多
Indigenous agroforestry systems have been practiced for centuries in the Himalaya Mountains and adjoining regions.With the increase of climate change associated risks,enhanced understanding of the impact of climate ch...Indigenous agroforestry systems have been practiced for centuries in the Himalaya Mountains and adjoining regions.With the increase of climate change associated risks,enhanced understanding of the impact of climate change and related phenomena on the potential distribution of agroforestry is increasingly useful and necessary,for both maintaining and improving yield and ecosystem function.In particular,展开更多
文摘An experimental study on mitigation of greenhouse gas (CH4, N2O and NO) emission has been conducted in a typical cropping system of Southeast China for 4 years. By simultaneous measurement, the CH4, N2O and NO emission fluxes from rice-wheat rotation fields, effects of fertilization, water management, temperature and soil moisture were investigated. Temperature, fertilization and water status were found to be the key factors to regulate CH4, N2O and NO emis-sions. Based on the experimental results, some agricultural measures were recommended as techni-cal options to mitigate greenhouse gas emissions from rice-wheat rotation ecosystems. These miti-gation measures are reducing mineral N input, coupling organic manure with chemical fertilizers, applying fertilizers which release available N slowly during periods with intensive plant activity, and applying dry fermented organic manure and well management of water and fertilizer. Key words Mitigation options - Emission - Greenhouse gases - Ecosystems This study was supported by projects “ Experimental and Modeling Study on N2O Emission from the Rice-Wheat Rotation Fields of Southeast China” and “ Experimental and Modeling Study on NO Emission from Croplands” , which were granted by the National Natural Science Foundation of China, the State Key Fundamental Research Project “ Predicting the Future (20–50 years) Trend of Environmental Change in China”, and the project of Chinese Academy of Sciences “ Theory and Methodology on Air Pollution Prediction”.Thanks are due to Professor Zhang Wen, Dr. Bai Jianhui, Mr. Gong Yanbang, Mrs. Luo Dongmei and Mr. Liu Guangren from the Institute of Atmospheric Physics, Chinese Academy of Sciences for their help in experiments.
基金funded by the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(No.Y2022GH12)the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-FRI-04).
文摘Background:This study investigated greenhouse gas(GHG)emission characteristics of lactating Holstein dairy cows in East China and provided a basis for formulating GHG emission reduction measures.GreenFeed system was used to measure the amount of methane(CH_(4))and carbon dioxide(CO_(2))emitted by the cows through respiration.Data from a commercial cow farm were used to observe the effects of parity,body weight,milk yield,and milk component yield on CH_(4) and CO_(2) emissions.Results:Mean herd responses throughout the study were as follows:111 cows completed all experimental processes,while 42 cows were rejected because they were sick or had not visited the GreenFeed system 20 times.On average,lactating days of cows was 138±19.04 d,metabolic weight was 136.5±9.5 kg,parity was 2.8±1.0,dry matter intake(DMI)was 23.1±2.6 kg/d,and milk yield was 38.1±6.9 kg/d.The GreenFeed system revealed that CH_(4) production(expressed in CO_(2) equivalent,CO_(2)-eq)was found to be 8304 g/d,CH_(4)_(CO_(2)−eq)/DMI was 359 g/kg,CH_(4)_(CO_(2)−eq)/energy-corrected milk(ECM)was 229.5 g/kg,total CO_(2) production(CH_(4) production plus CO_(2) production)was 19,201 g/d,total CO_(2)/DMI was 831 g/kg,and total CO_(2)/ECM was 531 g/kg.The parity and metabolic weight of cows had no significant effect on total CO_(2) emissions(P>0.05).Cows with high milk yield,milk fat yield,milk protein yield,and total milk solids yield produced more total CO_(2)(P<0.05),but their total CO_(2) production per kg of ECM was low(P<0.05).The total CO_(2)/ECM of the medium and high milk yield groups was 17%and 27%lower than that of the low milk yield group,respectively.Conclusions:The parity and body condition had no effect on total CO_(2) emissions,while the total CO_(2)/ECM was negatively correlated with milk yield,milk fat yield,milk protein yield,and total milk solids yield in lactating Holstein dairy cows.Measurement of total CO_(2) emissions of dairy cows in the Chinese production system will help establish regional or national GHG inventories and develop mitigation approaches to dairy production regimes.
文摘The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for further development and utilization of this classical agricultural technique. The effect of reducing methane emission and the economic benefits of rice-duck ecological system were studied by carrying out a field experiment and by using economic methodology. The daily variation of CH4 emission in late rice paddy field was basically consistent with the daily variation of atmospheric temperature. The highest emission occurred at the full tillering stage of late rice with a rate of 24.1 or 32.2 or 40.5 mg m^-2 h^-1 in no-tillage area with duck and no-tillage area without duck and conventional-tillage area without duck, respectively. The inhibition of methane emission was apparently effective in the rice-duck ecological system during the initial tillering stage and the full tillering stage. Compared to the no-tillage area without duck, methane emission decreased by 2.333 g m^-2. Compared to the conventional-tillage area without duck, methane emission decreased by 4.723 g m^-2. During the production period of late rice, the amount of methane emission in no-tillage area with duck was 3.373 g m^-2 lesser than that of no-tillage area without duck, and 5.59 g m^-2 less than that of conventional-tillage without duck area. The economic significance was analyzed. Farmers adopting the rice-duck ecological system obtained 2 166 and 4 207 RMB yuan ha^-1 more income than those who adopted a no-tillage without duck technique or conventional-tillage without duck technique, respectively. In addition to the reduction of the environmental pollution by methane emission, the farmers who adopted the rice-duck ecological system achieved economic benefits of 5 000 RMB yuan ha^-1, which was 2 206 and 4 274 RMB yuan ha^-1 more than those who adopted a no-tillage without duck technique and a conventional-tillage without duck technique, respectively. The rice-duck ecological system not only increased the economic benefits for farmers, but also reduced methane emission in rice paddy field. A sustainable agricultural production mode was formed.
文摘Indigenous agroforestry systems have been practiced for centuries in the Himalaya Mountains and adjoining regions.With the increase of climate change associated risks,enhanced understanding of the impact of climate change and related phenomena on the potential distribution of agroforestry is increasingly useful and necessary,for both maintaining and improving yield and ecosystem function.In particular,