期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Immp2l Mutation Induces Mitochondrial Membrane Depolarization and Complex Ⅲ Activity Suppression after Middle Cerebral Artery Occlusion in Mice
1
作者 Yi MA Rui-min LIANG +5 位作者 Ning MA Xiao-juan MI Zheng-yi CHENG Zi-jing ZHANG Bai-song LU P.Andy LI 《Current Medical Science》 SCIE CAS 2023年第3期478-488,共11页
Objective We previously reported that mutations in inner mitochondrial membrane peptidase 2-like(Immp2l)increase infarct volume,enhance superoxide production,and suppress mitochondrial respiration after transient cere... Objective We previously reported that mutations in inner mitochondrial membrane peptidase 2-like(Immp2l)increase infarct volume,enhance superoxide production,and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury.The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice.Methods Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0,1,5,and 24 h of reperfusion.The effects of Immp2l^(+/−)on mitochondrial membrane potential,mitochondrial respiratory complex III activity,caspase-3,and apoptosis-inducing factor(AIF)translocation were examined.Results Immp2l^(+/−)increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice.Immp2l^(+/−)led to mitochondrial damage,mitochondrial membrane potential depolarization,mitochondrial respiratory complex III activity suppression,caspase-3 activation,and AIF nuclear translocation.Conclusion The adverse impact of Immp2l^(+/−)on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential,inhibition of the mitochondrial respiratory complex III,and activation of mitochondria-mediated cell death pathways.These results suggest that patients with stroke carrying Immp2l^(+/−)might have worse and more severe infarcts,followed by a worse prognosis than those without Immp2l mutations. 展开更多
关键词 cerebral ischemia inner mitochondrial membrane peptidase 2-like mitochondrial membrane potential mitochondrial complex III apoptosis
下载PDF
Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation 被引量:15
2
作者 WANG Guan-yu ZHANG Jia-wei +2 位作者 LU Qing-hua XU Rong-zhen DONG Qing-hua 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第4期248-255,共8页
Objective: To investigate the effect ofberbamine on human hepatoma cell line SMMC7721. Methods: The effects of 24 h and 48 h incubation with different concentrations (0-64 μg/ml) of the berbamine on SMMC7721 cell... Objective: To investigate the effect ofberbamine on human hepatoma cell line SMMC7721. Methods: The effects of 24 h and 48 h incubation with different concentrations (0-64 μg/ml) of the berbamine on SMMC7721 cells were evaluated using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining was conducted to distinguish the apoptotic cell, and the appearance of sub-G1 stage was determined by PI (propidium iodide) staining, the percentage of apoptotic cell was determined by flow cytometry following annexin V/PI staining. Flow cytometry was performed to analyze the cell cycle distribution and the mitochondrial membrane potential (△ψm), the expression of activated caspase3 and caspase9 was analyzed by Western-blot. Results: The proliferation of SMMC7721 was decreased after treatment with berbamine in a dose- and time-dependent manner. Berbamine could induce apoptosis in SMMC7721 cells and could cause cell cycle arrest in G0/G1 phase, to induce loss of mitochondrial membrane potential (AVm) and activate caspase3 and caspase9. Berbamine-induced apoptosis could be blocked by the broad caspase inhibitor z-VAD-fmk. Conclusion: Berbamine exerts antiproliferative effects on human hepatocellular carcinoma SMMC7721 cells. The anticancer activity of berbamine could be attributed partly to its inhibition of cell proliferation and induction of apoptosis in cancer cells through loss in mitochondrial transmembrane potential and caspase activation. 展开更多
关键词 BERBAMINE APOPTOSIS mitochondrial membrane potential CASPASE HEPATOMA
下载PDF
Interventional effect of phycocyanin on mitochondrial membrane potential and activity of PC12 cells after hypoxia/reoxygenation 被引量:3
3
作者 Nan Jiang Yunliang Guo Hongbing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期137-139,共3页
BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of... BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of phycocyanin on activity of PC12 cells and mitochondrial membrane potential after hypoxia/reoxygenation. DESIGN: Randomized controlled study SETTING : Cerebrovascular Disease Institute of Affiliated Hospital, Medical College of Qingdao University MATERIALS: The experiment was carried out at the Key Laboratory of Prevention and Cure for cerebropathia in Shandong Province from October to December 2005. PC12 cells, rat chromaffin tumor cells, were provided by Storage Center of Wuhan University; phycocyanin was provided by Ocean Institute of Academia Sinica; Thiazoyl blue tetrazolium bromide (MTT) and rhodamine 123 were purchased from Sigma Company, USA; RPMI-1640 medium, fetal bovine serum and equine serum were purchased from Gibco Company, USA. METHODS: ① Culture of PC12 cells: PC12 cells were put into RPMI-1640 medium which contained 100 g/L heat inactivation equine serum and 0.05 volume fraction of fetal bovine serum and incubated in CO2 incubator at 37℃. Number of cells was regulated to 4 × 10^5 L 1, and cells were inoculated at 96-well culture plate. The final volume was 100μL. ② Model establishing and grouping: Cultured PC12 cells were randomly divided into three groups: phycocyanin group, model control group and non-hypoxia group. At 24 hours before hypoxia, culture solution in phycocyanin group was added with phycocyanin so as to make sure the final concentration of 3 g/L , but cells in model control group did not add with phycocyanin. Cells in non-hypoxia group were also randomly divided into adding phycocyanin group (the final concentration of 3 g/L) and non-adding phycocyanin group. Cells in model control group and phycocyanin group were cultured with hypoxia for 1 hour and reoxygenation for 1, 2 and 3 hours; meanwhile, cells in non-hypoxia group were cultured with oxygen and were measured at 1 hour after hypoxia/reoxygenation. ③ Detecting items: At 1, 2 and 3 hours after reoxygenation, absorbance (A value) of PC12 cells was measured with MTT technique so as to observe activity and quantity of cells. Fluorescence intensity of PC12 cells marked by rhodamine 123 was measured with confocal microscope in order to observe changes of mitochondrial membrane potential. MAEN OUTCOME MEASURES: Comparisons between quantity and activity of PC12 cells and mitochondria membrane potential at 1, 2 and 3 hours after reoxygenation. RESULTS: ① Effect of phycocyanin on quantity and activity of PC12 cells: A value was 0.924±0.027 in adding phycocyanin group and 0.924±0.033 in non-adding phycocyanin group. A value was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after reoxygenation (0.817±0.053, 0.838±0.037, 0.875±0.029; 0.842±0.029, 0.872±0.025, 0.906±0.023, P 〈 0.05). A value was higher in phycocyanin group than that in model control group at 1, 2 and 3 after culture (P 〈 0.05). With culture time being longer, A value was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). ~ Effect of phycocyanin on mitochondrial membrane potential of PC12 cells: Fluorescence intensity was 2.967±0.253 in adding phycocyanin group and 2.962±0.294 in non-adding phycocyanin group. Fluorescence intensity was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after hypoxia/reoxygenation (1.899±0.397, 2.119±0.414, 2.287±0.402; 2.191±0.377, 2.264±0.359, 2.436±0.471, P 〈 0.05); but it was higher in phycocyanin group than that in model control group at 1, 2 and 3 after reoxygenation (P 〈 0.05). With culture time being longer, fluorescence intensity was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). CONCLUSION: Phycocyanin and reoxygenation can protect PC12 cells after hypoxia injury through increasing mitochondrial membrane potential and cellular activity, and the effect is improved gradually with prolonging time of reoxygenation. 展开更多
关键词 Interventional effect of phycocyanin on mitochondrial membrane potential and activity of PC12 cells after hypoxia/reoxygenation PC
下载PDF
Rabbit Annulus Fibrosus Cell Apoptosis Induced by Mechanical Overload via a Mitochondrial Apoptotic Pathway 被引量:3
4
作者 谢卯 杨述华 +3 位作者 Hein Latt Win 熊蠡茗 黄吉军 周建国 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第3期379-384,共6页
In order to investigate the apoptotic pathway of rabbit annulus fibrosus(AF) cells induced by mechanical overload,an experimental air-pressure model was established in this study to pressurize the rabbit AF cells in v... In order to investigate the apoptotic pathway of rabbit annulus fibrosus(AF) cells induced by mechanical overload,an experimental air-pressure model was established in this study to pressurize the rabbit AF cells in vitro.Cells were randomly divided into five groups in which the cells were exposed to a continuous pressure of 1.1 MPa for different lengths of time(0,5,12,24 and 36 h).The cell proliferation and apoptosis were detected by cell counting kit-8(CCK-8) assay and flow cytometry;the alterations in mitochondrial membrane potential were measured by fluorescence microscopy and fluorescence spectrophotometer;the activities of caspase-8 and 9 were determined by spectrophotometry.The results showed that after the cells were subjected to the pressure for 24 or 36 h,the cell proliferation was inhibited;the ratio of cell apoptosis was increased;the mitochondrial membrane potential was decreased;the activity of caspase-9 was enhanced;no activity changes were observed in caspase-8.The results suggested that treatment with a pressure of 1.1 MPa for more than 24 h can lead to the proliferation inhibition and the apoptosis of rabbit AF cells in vitro,and the mitochondrial-dependent pathway is implicated in the pressure-induced AF cell apoptosis. 展开更多
关键词 pressure annulus fibrosus APOPTOSIS mitochondrial membrane potential CASPASE
下载PDF
Evaluation of sperm mitochondrial function using rh123/PI dual fluorescent staining in asthenospermia and oligoasthenozoospermia 被引量:4
5
作者 Tiejun Zou Xiang Liu Shangshu Ding Junping Xing 《The Journal of Biomedical Research》 CAS 2010年第5期404-410,共7页
Objective:The recent advent of flow cytometry(FCM),coupled with fluorescent dyes,has been successfully applied to assess mitochondrial function.The aim of this study was to investigate the feasibility and clinical ... Objective:The recent advent of flow cytometry(FCM),coupled with fluorescent dyes,has been successfully applied to assess mitochondrial function.The aim of this study was to investigate the feasibility and clinical significance of detecting sperm mitochondrial function and to evaluate sperm mitochondrial function by using Rhodamine 123/propidium(Rh123/PI)dual fluorescent staining and FCM in asthenospermia and oligoasthenozoospermia.Methods:Twenty-five fertile men(with normal sperm parameters)and 230 infertile patients were examined.Fifty-five patients of the above 230 patients were selected for idiopathic infertility samples and were divided into two groups:asthenospermia(n=30)and oligoasthenozoospermia(n=25).Rh123/PI dual fluorescent staining and FCM were carried out to examine sperm mitochondrial function.Results:Significant differences were found between the normal and abnormal semen samples(P0.05)when Rh123+/PI-,Rh123-/PI+and Rh123-/PI-sperm were examined by FCM,but there was no significant difference between the asthenospermia(P=0.469) and oligoasthenozoospermia group(P=0.950)when Rh123+/PI-and Rh123-/PI+sperm were then examined;however,a significant difference was found between the 2 groups(P=0.003)when Rh123-/PI-sperm were examined.There was no correlation between Rh123-/PI-sperm and semen parameters in the normal group,but there was a significant negative correlation between the sperm concentration and Rh123-/PI-sperm in asthenospermia and oligoasthenozoospermia patients(r=-0.509,-0.660;P=0.018,0.038).Conclusion:Rh123/PI dual fluorescent staining and FCM can provide reliable information to assess the quality of sperm and reveal differences in mitochondrial membrane potential in asthenospermia and oligoasthenozoospermia. 展开更多
关键词 asthenospermia oligoasthenozoospermia mitochondrial membrane potential flow cytometry Rhodamine 123/propidium double fluorescent staining
下载PDF
Pigment epithelium-derived factor protects retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction 被引量:6
6
作者 Shu-Wei Tian Yuan Ren +2 位作者 Jin-Zhi Pei Bai-Chao Ren Yuan He 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第7期1046-1054,共9页
AIM: To investigate the potential of pigment epitheliumderived factor(PEDF) to protect the immortalized rat retinal ganglion cells-5(RGC-5) exposed to Co Cl2-induced chemical hypoxia. METHODS: After being differ... AIM: To investigate the potential of pigment epitheliumderived factor(PEDF) to protect the immortalized rat retinal ganglion cells-5(RGC-5) exposed to Co Cl2-induced chemical hypoxia. METHODS: After being differentiated with staurosporine(SS), RGC-5 cells were cultured in four conditions: control group cells cultured in Dulbecco 's modified eagle medium(DMEM) supplemented with 10% fetal bovine serum, 100 μmol/m L streptomycin and penicillin(named as normal conditions); hypoxia group cells cultured in DMEM containing 300 μmol/m L Co Cl2; cells in the group protected by PEDF were first pretreated with 100 ng/m L PEDF for 2h and then cultured in the same condition as hypoxia group cells; and PEDF group cells that were cultured in the presence of 100 ng/m L PEDF under normal conditions. The cell viability was assessed by MTT assay, the percentage of apoptotic cells was quantified using Annexin V-FITC apoptosis kit, and intra-cellar reactive oxygen species(ROS) was measured by dichloro-dihydro-fluorescein diacetate(DCFH-DA) probe. The mitochondria-mediated apoptosis was also examined to further study the underlying mechanism of the protective effect of PEDF. The opening of mitochondrial permeability transition pores(m PTPs) and membrane potential(Δψm) were tested as cellular adenosine triphosphate(ATP) level and glutathione(GSH). Also, the expression and distribution of Cyt C and apoptosis inducing factor(AIF) were observed.RESULTS: SS induced differentiation of RGC-5 cells resulting in elongation of their neurites and establishing contacts between outgrowths. Exposure to 300 μmol/m L Co Cl2 triggered death of 30% of the total cells in cultures within 24 h. At the same time, pretreatment with 100 ng/m L PEDF significantly suppressed the cell death induced by hypoxia(P〈0.05). The apoptosis induced by treatment of Co Cl2 was that induced cell death accompanied with increasing intracellar ROS and decreasing GSH and ATP level. PEDF pretreatment suppressed these effects(P〈0.05). Additionally, PEDF treatment inhibited the opening of m PTPs and suppressed decreasing of Δψm in RGC-5 cells, resulting in blocking of the mitochondrial apoptotic pathway.CONCLUSION: Pretreatment of RGC-5 cells with 100 ng/m L PEDF significantly decreases the extent of apoptosis. PEDF inhibits the opening of m PTPs and suppresses decreasing of Δψm. Moreover, PEDF also reduces ROS production and inhibits cellular ATP level's reduction. Cyt C and AIF activation in PEDF-pretreated cultures are also reduced. These results demonstrate the potential for PEDF to protect RGCs against hypoxic damage in vitro by preventing mitochondrial dysfunction. 展开更多
关键词 pigment epithelium-derived factor CoCl2 retinal ganglion cells-5 reactive oxygen species reduced glutathione hormone mitochondrial permeability transition pores membrane potential adenosine triphosphate Cyt C apoptosis-inducing factor
下载PDF
3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury 被引量:10
7
作者 Wa Yuan Qin Chen +4 位作者 Jing Zeng Hai Xiao Zhi-hua Huang Xiao Li Qiong Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期235-241,共7页
3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein(an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfus... 3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein(an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage. 展开更多
关键词 nerve regeneration 3′-daidzein sulfonate sodium cerebral ischemia/reperfusion injury infarct volume anti-oxidation mitochondria mitochondrial membrane swelling mitochondrial membrane potential superoxide dismutase malondialdehyde glutathione peroxidase blood-brain barrier neural regeneration
下载PDF
Protection of melatonin against damage of sperm mitochondrial function induced by reactive oxygen species
8
作者 Xue-JunShang Yu-FengHuang +2 位作者 Zhang-QunYe XiaoYu Wan-JiaGu 《Asian Journal of Andrology》 SCIE CAS CSCD 2004年第4期354-354,共1页
Aim: To study the mitochondrial function damage of sperm induced by reactive oxygen species (ROS) and the protection of melatonin (MLT) against the damage. Methods: Normal function spermatozoa were selected from semen... Aim: To study the mitochondrial function damage of sperm induced by reactive oxygen species (ROS) and the protection of melatonin (MLT) against the damage. Methods: Normal function spermatozoa were selected from semen samples by Percoll gradient centrifugation technique. The ROS generated by the hypoxan-thine xanthine oxidase system was incubated with the normal spermatozoa in the presence or absence of MLT (6 mmol/L) for 30 and 60 minutes. After incubation, the activity of succinate dehydroge-nase (SDH) in the mitochondria of spermatozoa was assessed by histochemical method and spermatozoa were labeled with specific fluorescent probe of Rhodamine 123 to measure the mitochondrial membrane potential (MMP) by flow cytometry. Results: After the normal spermatozoa were incubated with ROS, The sperm MMP was significantly decreased and the SDH activity of almost decreased to zero. MLT reduced the mitochondrial damage induced by ROS. Conclusion: ROS damage the mitochondrial function of sperm by affecting sperm MMP and SDH activity of. MLT protects sperm mitochondria from the damage induced by ROS through its effective antioxidative potential. 展开更多
关键词 MELATONIN reactive oxygen species succinate dehydrogenase mitochondrial membrane potential SPERM
下载PDF
Study on the in vitro anti ovarian cancer effect and mechanism of quinazoline derivative(N111)
9
作者 LI Yan HUANG Qiang +2 位作者 HUANG Yin-jiu LIU Gang LIU Jian 《Journal of Hainan Medical University》 CAS 2023年第19期9-17,共9页
Objective:To study the anti-ovarian cancer effect and mechanism of Quinazoline derivative(N111)in vitro;Method:Using an online database to predict the therapeutic targets of N111 for ovarian cancer,and conducting biol... Objective:To study the anti-ovarian cancer effect and mechanism of Quinazoline derivative(N111)in vitro;Method:Using an online database to predict the therapeutic targets of N111 for ovarian cancer,and conducting biological functional analysis of the therapeutic targets.The experiment was divided into N111 treatment group(N111 compound group),positive control group(cisplatin group),and negative control group(DMSO group);After grouping,MTT assay was used to detect cell proliferation;Morphological observation was used to observe changes in cell morphology;JC-1 and DCFH-DA probes were used to detect the changes of mitochondrial Membrane potential and intracellular reactive oxygen species;PI,Annexin V-FITC,and DAPI staining were used to detect cell cycle arrest and apoptosis;Clone formation experiments and scratch tests were conducted to detect the cell's ability to form clones and migrate;Western blot method was used to detect the expression level of related proteins.Result:The biological function research results show that the biological function of N111 anti ovarian cancer target protein suggests that the target function aggregates human diseases,inflammation,tumors,and other aspects.Compared with the control group,N111 has a significant inhibitory effect on the proliferation of ovarian cancer cells(IC50=14.62 mmol/L)(P<0.0001);In a concentration dependent manner,it inhibited the formation and migration of single cell colonies,and induced the disorder of mitochondrial Membrane potential,ROS and cell cycle arrest in S phase(P<0.0001);As the concentration of N111 treatment increased,the expression levels of Bcl2,Caspase 3,P-AKT,and SHIP2 decreased,while the expression levels of AKT remained unchanged.The expression levels of Bax and Cleared Caspase 3 increased(P<0.0001).Conclusion:Compound N111 inhibits SHIP2,promotes ROS level disorder,weakens the activation of AKT signaling pathway,and thus inhibits the proliferation,migration,and clone formation of tumor cell A2780,inducing cell apoptosis. 展开更多
关键词 Quinazoline derivatives ANTI-TUMOR Apoptosis mitochondrial membrane potential ROS
下载PDF
Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury 被引量:29
10
作者 Lian Liu Xiao-Yuan Sha +2 位作者 Yi-Ning Wu Meng-Ting Chen Jing-Xiang Zhong 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1526-1531,共6页
The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation,protein damage and DNA fragmentation.Increased oxidative stress is... The accumulation of excessive reactive oxygen species can exacerbate any injury of retinal tissue because free radicals can trigger lipid peroxidation,protein damage and DNA fragmentation.Increased oxidative stress is associated with the common pathological process of many eye diseases,such as glaucoma,diabetic retinopathy and ischemic optic neuropathy.Many studies have demonstrated that Lycium barbarum polysaccharides(LBP)protects against oxidative injury in numerous cells and tissues.For the model of hypoxia we used cultured retinal ganglion cells and induced hypoxia by incubating with 200μM cobalt chloride(CoCl2)for 24 hours.To investigate the protective effect of LBP and its mechanism of action against oxidative stress injury,the retinal tissue was pretreated with 0.5 mg/mL LBP for 24 hours.The results of flow cytometric analysis showed LBP could effectively reduce the CoCl2-induced retinal ganglion cell apoptosis,inhibited the generation of reactive oxygen species and the reduction of mitochondrial membrane potential.These findings suggested that LBP could protect retinal ganglion cells from CoCl2-induced apoptosis by reducing mitochondrial membrane potential and reactive oxygen species. 展开更多
关键词 CASPASE cell apoptosis cobalt chloride Lycium barbarum polysaccharides mitochondrial membrane potential oxidative stress injury reactive oxygen species retinal ganglion cells
下载PDF
Astragaloside Ⅳ protects RGC-5 cells against oxidative stress 被引量:15
11
作者 Ming Hao Yu Liu +2 位作者 Ping Chen Hong Jiang Hong-Yu Kuang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期1081-1086,共6页
Astragaloside Ⅳ is the main active compound of Astragalus membranaceus. Astragaloside Ⅳ has strong anti-oxidative activities and protective effects against progression of peripheral neuropathy. In this study, we det... Astragaloside Ⅳ is the main active compound of Astragalus membranaceus. Astragaloside Ⅳ has strong anti-oxidative activities and protective effects against progression of peripheral neuropathy. In this study, we determined whether astragaloside Ⅳ protects retinal ganglion cells(RGC) from oxidative stress injury using the rat RGC-5 cell line. Hydrogen peroxide(H_2O_2) was used to induce oxidative stress injury, with the protective effect of astragaloside Ⅳ examined. Cell Counting Kit-8 and 4′,6-diamidino-2-phenylindole staining showed that astragaloside Ⅳ increased cell survival rate and decreased apoptotic cell number. Flow cytometry showed that astragaloside Ⅳ decreased H_2O_2-induced reactive oxygen species levels. While laser confocal microscopy showed that astragaloside Ⅳ inhibited the H_2O_2-induced decrease of mitochondrial membrane potential. Western blot assay showed that astragaloside Ⅳ reduced cytochrome c release induced by H_2O_2, inhibited Bax and caspase-3 expression, and increased Bcl-2 expression. Altogether, these results indicate that astragaloside Ⅳ has potential protective effects against H_2O_2-induced oxidative stress in retinal ganglion cells. 展开更多
关键词 nerve regeneration Astragalus membranaceus hydrogen peroxide H2O2 RETINOPATHY neuroprotective effects retinal ganglion cells APOPTOSIS reactive oxygen species mitochondrial membrane potential mitochondrial pathway neural regeneration
下载PDF
S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3 被引量:14
12
作者 Saeid Ghavami Mehdi Eshragi +7 位作者 Sudharsana R Ande Walter J Chazin Thomas Klonisch Andrew J Halayko Karol D Mcneill Mohammad Hashemi Claus Kerkhoff Marek Los 《Cell Research》 SCIE CAS CSCD 2010年第3期314-331,共18页
The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular... The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular mechanisms involve both programmed cell death I (PCD I, apoptosis) and PCD II (autophagy)-like death. Treatment of cells with S100A8/A9 caused the increase of Beclin-1 expression as well as Atgl2-Atg5 formation. S100A8/A9-induced cell death was partially inhibited by the specific PI3-kinase class Ⅲ inhibitor, 3-methyladenine (3-MA), and by the vacuole H+-ATPase inhibitor, bafilomycin-A1 (Baf-A1). S100A8/A9 provoked the translocation of BNIP3, a BH3 only pro-apoptotic Bcl2 family member, to mitochondria. Consistent with this finding, ATM-BNIP3 overexpression partially inhibited S100A8/A9-induced cell death, decreased reactive oxygen species (ROS) generation, and partially pro- tected against the decrease in mitochondrial transmembrane potential in S100A8/A9-treated ceils. In addition, either ATM-BNIP3 overexpression or N-acetyl-L-cysteine co-treatment decreased lysosomal activation in cells treated with S100A8/A9. Our data indicate that S100A8/A9-promoted cell death occurs through the cross-talk of mitochondria and lysosomes via ROS and the process involves BNIP3. 展开更多
关键词 S100A8/A9 CALPROTECTIN lysosomal activation mitochondrial membrane potential BNIP3 BECLIN-1
下载PDF
The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury 被引量:6
13
作者 Chun Luo Su-yue Pan 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期153-158,共6页
Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp- ase-3 expression, It is h... Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp- ase-3 expression, It is hypothesized that mild hypothermia exhibits neuroprotective effects on neurons exposed to ischemia/reperfusion condition produced by oxygen-glucose deprivation. Mild hypothermia significantly reduced the number of apoptotic neurons, decreased the expres- sion of pro-apoptotic protein Bax and increased mitochondrial membrane potential, with the peak of anti-apoptotic effect appearing between 6 and 12 hours after the injury. These findings indicate that mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury by protecting the mitochondria and that the effective time window is 6-12 hours after ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration mild hypothermia oxygen-glucose deprivation cell apoptosis neu-rons mitochondrial membrane potential Bax ISCHEMIA/REPERFUSION neural regeneration
下载PDF
Inhibitory Effect of Isorhapontigenin on Copper-Mediated Peroxidation of Human Low-Density Lipoprotein in vitro
14
作者 方亚南 林茂 刘耕陶 《Journal of Chinese Pharmaceutical Sciences》 CAS 2004年第1期63-67,共5页
Aim To study the effect of Isorhapontigenin (Iso) on copper-mediatedperoxidation of human low-density lipoprotein (LDL) and on the toxicity of oxidized LDL (ox-LDL) tomouse macrophages in vitro. Methods Human LDL from... Aim To study the effect of Isorhapontigenin (Iso) on copper-mediatedperoxidation of human low-density lipoprotein (LDL) and on the toxicity of oxidized LDL (ox-LDL) tomouse macrophages in vitro. Methods Human LDL from sera df normal lipidemic donors was separated bysequential ultracentrifugation. The separated human IDL 1 mg·mL^(-1) in phosphate buffer saline, pH7.4, was incubated with cupric sulfate (10 μmol·L^(-1) ) at 37℃ for 10 h in the presence orabsence of various concentrations of Iso. Malondialdehyde (MDA) formation, vitamin E consumption,electrophoretic mobility of LDL, mitochondria] membrane potential of mouse peritoneal macrophages,phagocytosis of neutral red, and release of nitric oxide (NO) from macrophages were determined byvarious methods. Results Iso 1 - 100 μmol·L^(-1) significantly inhibited the increase of MDAformation, vitamin E consumption and electrophoretic mobility of LDL induced by Cu^(2+) in aconcentration-dependent manner. The injury of the mitochondrial membrane potential of mouseperitoneal macrophages due to incubation with ox-LDL (0.1 mg·mL^(-1)) at 37℃ for 12 h was markedlyprotected by 10 μmol·L^(-1) Iso. After pretreat-ment of the macrophages with 10 μmol · L^(-1)of Iso and then exposure to ox-LDL for 4 h, the reduction of phagocytosis of neutral red and releaseof NO in response to lipopolysaccharide (IPS) stimulation were significantly prevented. ConclusionIso has protective action against Cu^(2+) - mediated LDL peroxidation and ox-LDL induced toxicity tomacrophages in vitro. 展开更多
关键词 ISORHAPONTIGENIN low-density lipoprotein oxidized low-density lipoprotein MACROPHAGES PHAGOCYTOSIS mitochondrial membrane potential
下载PDF
Protective effects of curcumin against human immunodeficiency virus 1 gp120 V3 loop-induced neuronal injury in rats 被引量:5
15
作者 Zheng Gong Lijuan Yang +8 位作者 Hongmei Tang Rui Pan Sai Xie Luyan Guo Junbin Wang Qinyin Deng Guoyin Xiong Yanyan Xing Jun Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第3期171-175,共5页
Curcumin improves the learning and memory deficits in rats induced by the gp120 V3 loop. The present study cultured rat hippocampal neurons with 1 nM gp120 V3 loop and 1 μM curcumin for 24 hours. The results showed t... Curcumin improves the learning and memory deficits in rats induced by the gp120 V3 loop. The present study cultured rat hippocampal neurons with 1 nM gp120 V3 loop and 1 μM curcumin for 24 hours. The results showed that curcumin inhibited the gp120 V3 loop-induced mitochondrial membrane potential decrease, reduced the mRNA expression of the pro-apoptotic gene caspase-3, and attenuated hippocampal neuronal injury. 展开更多
关键词 CURCUMIN gp120 V3 loop hippocampal neurons mitochondrial membrane potential CASPASE-3 human immunodeficiency virus-associated neurocognitive function neural regeneration
下载PDF
Autophagy Attenuates MnCl2-induced Apoptosis in Human Bronchial Epithelial Cells 被引量:5
16
作者 YUAN Zhun YING Xian Ping +7 位作者 ZHONG Wei Jian TIAN Shi Min WANG Yu JIA Yong Rui CHEN Wen FU Juan Ling ZHAO Peng ZHOU Zong Can 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2016年第7期494-504,共11页
Objective To investigate the role of autophagy in MnC l2-induced apoptosis in human bronchial epithelial 16 HBE cells.Methods Cell proliferation was measured by MTT assay.Mitochondrial membrane potential(MMP) and ap... Objective To investigate the role of autophagy in MnC l2-induced apoptosis in human bronchial epithelial 16 HBE cells.Methods Cell proliferation was measured by MTT assay.Mitochondrial membrane potential(MMP) and apoptosis were measured by flow cytometry.Autophagic vacuoles were detected by fluorescence microscopy.Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting.Results 16 HBE cell proliferation was inhibited by Mn Cl2 in a dose-and time-dependent manner.Mn Cl2-induced 16 HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis.Our data revealed that Mn Cl2-induced apoptosis in 16 HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3.It was observed that when we exposed 16 HBE cells to MnCl2 in a dose-dependent manner,the formation of autophagic vacuoles and the levels of LC-3B-II were elevated.RNA interference of LC3 B in these Mn Cl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced.Additionally,the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis,but did not affect the cellular levels of LC3 B in Mn Cl2-treated 16 HBE cells.Conclusion Mn Cl2 dose-and time-dependently inhibits 16 HBE cell proliferation and induces MMP loss and apoptosis.Autophagy acts in a protective role against Mn Cl2-induced apoptosis in 16 HBE cells. 展开更多
关键词 Manganese chloride APOPTOSIS mitochondrial membrane potential AUTOPHAGY 16HBE cells
下载PDF
Damaging Effect of Cigarette Smoke Extract on PrimaryCultured Human Umbilical Vein Endothelial Cells and Its Mechanism 被引量:4
17
作者 Yu-MEIYANG GENG-TAOLIU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2004年第2期121-134,共14页
Objective To investigate the cellular effects of cigarette smoke extract (CSE) on primarily cultured human umbilical vein endothelial cells (HUVEC). Methods The effects of CSE (5%-20%) and nicotine (10-4 mol/L) on HUV... Objective To investigate the cellular effects of cigarette smoke extract (CSE) on primarily cultured human umbilical vein endothelial cells (HUVEC). Methods The effects of CSE (5%-20%) and nicotine (10-4 mol/L) on HUVEC viability, proliferation, angiogenesis and apoptosis were observed. Results CSE decreased HUVEC survival rate and angiogenesis after 24 h as well as its proliferation after 48 h in a dose-dependent manner. Moreover, CSE induced apoptosis of HUVEC as indicated in condensation of nuclear chromatin and the presence of hypodiploid DNA. HUVEC incubated with CSE for 24 h gave a significant decrease in the expression of Bcl-2 as well as the decline in the Bcl-2/Bax ratio accompanied with the loss of mitochondrial membrane potential and excess cytosolic calcium. Our study also observed that p53 protein level decreased, rather than increased in cells treated with CSE. Nicotine had no discernible inhibitory effects on the above indices of HUVEC. Conclusion Exposure to CSE other than nicotine causes inhibition of viability, proliferation and differentiation of HUVEC. CSE-induced HUVEC injury is mediated in part through accelerated apoptosis but independent of p53 pathway. It appears that mitochondria have played a key role in the apoptosis of HUVEC induced by CSE. 展开更多
关键词 Cigarette smoke extracts (CSE) Human umbilical endothelial cell (HUVEC) VIABILITY Proliferation ANGIOGENESIS mitochondrial membrane potential Cytosolic calcium Bcl-2 BCL-2/BAX p53
下载PDF
S14G-humanin restored cellular homeostasis disturbed by amyloid-beta protein 被引量:1
18
作者 Xue Li Wencong Zhao +2 位作者 Hongqi Yang Junhong Zhang Jianjun Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第27期2573-2580,共8页
Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effect... Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons. 展开更多
关键词 neural regeneration Alzheimer's disease amyloid-beta protein wild type humanin S14G-humanin re-active oxygen species mitochondrial membrane potential grants-supported paper NEURODEGENERATION NEUROREGENERATION
下载PDF
Hydrogen sulfide inhibits beta-amyloid peptide-induced apoptosis in PC12 cells and the underlying mechanisms 被引量:1
19
作者 Xiuqin Chen Jingtian Li Jinhui Zou Bailing Li Meng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期939-944,共6页
BACKGROUND:Studies have demonstrated that hydrogen sulfide(H2S) levels are 55% lower in brains of Alzheimer's disease(AD) patients than in age-matched normal individuals,which suggests that H2S might be involved... BACKGROUND:Studies have demonstrated that hydrogen sulfide(H2S) levels are 55% lower in brains of Alzheimer's disease(AD) patients than in age-matched normal individuals,which suggests that H2S might be involved in some aspects of AD pathogenesis.OBJECTIVE:To observe the protective mechanisms of varied concentrations of H2S against β-amyloid-peptide(Aβ) induced apoptosis in pheochromoytoma(PC12) cells,and to analyze the pathway of action.DESIGN,TIME AND SETTING:A controlled,observational,in vitro experiment was performed at Neurophysiology Laboratory in Zhongshan Medical School,Sun Yat-sen University between July 2006 and May 2007.MATERIALS:PC12 cells were provided by the Animal Experimental Center of Medical School of Sun Yat-sen University.Glybenclamide,rhodamine123,and dihydrorhodamine123 were purchased from Sigma(USA).METHODS:PC12 cells were incubated at 37 ℃ in a 5% CO2-enriched incubator with RPMI-1640 medium,supplemented with 5% horse-serum and 10% fetal bovine serum.Cells in logarithmic growth curves received different treatment:The PC12 cells were maintains at 37 ℃ with the original medium,then incubated in Aβ25-35,sodium hydrosulfide(NaHS),glybenclamide,NaHS+ Aβ25-35,or pretreated with glybenclamide 30 minutes prior to administration of and Aβ25-35,respectively.MAIN OUTCOME MEASURES:(1) The survival rate of PC12 cells was detected by MTT assay and Hoechst staining.(2) The apoptosis rate of PC12 cells was detected utilizing flow cytometry with propidium iodide staining,and morphological changes of apoptotic cells were observed.(3) The mitochondrial membrane potential was detected by Rhodamine123-combined flow cytometry.(4) The intracellular reactive oxygen species content was detected by dihydrorhodamine123-combined flow cytometry.RESULTS:Aβ25-35 induced significantly decreased viability and increased percentage of apoptosis in PC12 cells,as well as dissipated mitochondrial membrane potential expression and an overproduction of reactive oxygen species.When PC12 cells were co-treated with NaHS and Aβ25-35,the decreased cell viability induced by 20 μmol/L Aβ25-35 was concentration-dependently blocked by NaHS(50,100,and 200 μmol/L).NaHS(100 μmol/L) obviously reduced the percentage of apoptotic PC12 cells induced by 20 μmol/L Aβ25-35.In addition,100 μmol/L NaHS inhibited mitochondrial membrane potential dissipation and reactive oxygen species overproduction.When the ATP-sensitive K channel(KATP) inhibitor,glybenclamide,was administered 30 minutes prior to NaHS and Aβ25-35 treatment,the NaHS-dependent cellular protection was partly blocked.This resulted in reduced PC12 cell viability and increased the percentage of apoptosis,as well as significantly blocked mitochondrial membrane potential preservation and inhibited reactive oxygen species overproduction due to NaHS treatment.CONCLUSION:NaHS protected PC12 cells against Aβ25-35-induced damage.NaHS-dependent cellular protection was associated with mitochondrial membrane potential preservation and inhibition of reactive oxygen species overproduction.The KATP channel inhibitor,glybenclamide,significantly blocked the cellular protective effects of NaHS,indicating that KATP channel activation plays an important role in NaHS-induced protection of PC12 cells to Aβ25-35-induced damage. 展开更多
关键词 APOPTOSIS β -amyloid peptide CYTOPROTECTION hydrogen sulfide mitochondrial membrane potential reactive oxygen species
下载PDF
N-hexane Alters the Maturation of Oocytes and Induces Apoptosis in Mice 被引量:1
20
作者 LIU Jin HUANG Lei +4 位作者 SUN Yan LI Yu Chen ZHU Jian Lin WANG Wen Xiang ZHANG Wen Chang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第9期735-741,共7页
Objective This study was aimed to determine the effects of n-hexane on the maturation of mouse oocytes. Methods Cell culture was used to observe the maturation of mouse oocytes and CLSM was employed to determine their... Objective This study was aimed to determine the effects of n-hexane on the maturation of mouse oocytes. Methods Cell culture was used to observe the maturation of mouse oocytes and CLSM was employed to determine their apoptosis. Results Germinal vesicle breakdown (GVBD) and extrusion of the first polar body in mouse oocytes were significantly inhibited by n-hexane. After fertilization, the number of eggs in the mouse was significantly reduced by n-hexane. Mitochondrial membrane potentials (A^Um) were altered in mouse oocytes that were leading to apoptosis of the oocytes. Conclusion N-hexane might have affected the maturation of oocytes, causing alteration of ~qJm and leading to apoptosis which maybe one of the most imn(~rt^nt rnpch^ni^nn~ 展开更多
关键词 N-HEXANE MATURATION FERTILIZATION mitochondrial membrane potential
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部