目的:观察3个月有氧运动对青年男性外周血淋巴细胞线粒体与细胞核DNA修复酶的影响,探讨有氧运动提高免疫功能的机制。方法:34名健康青年男性随机分为运动组(n=16)和对照组(n=18),运动组进行每周3次共12周的有氧运动干预,对照组保持日常...目的:观察3个月有氧运动对青年男性外周血淋巴细胞线粒体与细胞核DNA修复酶的影响,探讨有氧运动提高免疫功能的机制。方法:34名健康青年男性随机分为运动组(n=16)和对照组(n=18),运动组进行每周3次共12周的有氧运动干预,对照组保持日常生活习惯不变。实验前后分别测定淋巴细胞凋亡率、淋巴细胞线粒体和细胞核8-羟鸟嘌呤(8-oxoguanine,8-oxoG)、8-羟鸟嘌呤DNA糖基化酶α(8-oxoguanine DNAglycosylaseα,OGG1α)和OGG1β蛋白表达量。结果:两组基础值均无显著性差异。与实验前比较,实验后运动组淋巴细胞凋亡率显著性降低(5.10±0.89 vs 3.64±1.07,P<0.01),线粒体与细胞核8-oxoG均显著性降低(线粒体:8.75±1.85 vs 5.16±0.86,P<0.01;细胞核:3.93±1.35 vs 2.13±0.51,P<0.01),OGG1α和OGG1β均显著性升高(OGG1α:1.26±0.39 vs 2.31±0.42,P<0.01;OGG1β:0.83±0.17 vs 1.45±0.48,P<0.01),而对照组各指标均无显著性变化(均为P>0.05)。结论:规律有氧运动上调了淋巴细胞线粒体与细胞核DNA修复酶的表达量,降低了DNA氧化损伤,淋巴细胞凋亡率随之降低。展开更多
Organelle genomics has become its own field of study. Much information can be gleaned from the study of cell organelles. The differences in the genomes of organelles, such as the mitochondrion and the chloroplast are ...Organelle genomics has become its own field of study. Much information can be gleaned from the study of cell organelles. The differences in the genomes of organelles, such as the mitochondrion and the chloroplast are amenable to phylogenetic and cladistic studies. These differences include the genome sequence, GC%, genome length and gene order. The conserved nature of the organelle genomes and the gene inventory of both mitochondrial and chloroplast genomes also make this easier to accomplish. This paper includes a review of existing organelle genome software. These include gene annotation and genome visualization tools as well as organelle gene databases for both mitochondrion and plastid. A new R tool, available on github, called “Organelle DNA Lineages”, or ODL, was written to compare and classify organelle genomes based on their genome sequence and gene order. The software was run on the mitochondrial genomes of a set of 51 cephalopod species, delineating ten separate monophyletic groups, including argonauts, nautiluses, octopuses, cuttlefish, and six squid groups. This new tool can help enrich and expand the field of organelle genomics.展开更多
文摘综述了有关线粒体基因组 (m t DNA)多态性与运动能力的研究 :mt DNA为 16 5 6 9bp的双链闭环分子 ,含有 37个基因 ,排列紧密 ,无内含子。其转录、复制受核 DNA调控 ,同时也不同程度地影响核 DNA表达 ;mt DNA的多样性很高的结论被进一步证实 ,且 m t DNA的差异主要分布在群体内的个体间 ,而群体间的差异较小 ;目前研究认为 ,m t DNA多态性可能造成群体中有氧代谢能力的个体差异 ,是决定有氧能力和训练敏感性的可能分子机制之一。展示了中国运动员和汉人 m t DNA HVR 多态性 ,及其与运动能力关联性研究的结果 ,并对比分析了限制性酶切、直接测序、活细胞培养等方法对 mt DNA多态性与运动能力的研究结果 ,发现众多研究结果还存在不少争议 ,仍需进一步深入研究。 m t DNA作为良好的遗传标记 ,对其单核苷酸多态性(SNP)的分析及其与运动能力表型的关联研究和分子遗传学探讨具有重要意义和研究前景。
文摘目的:观察3个月有氧运动对青年男性外周血淋巴细胞线粒体与细胞核DNA修复酶的影响,探讨有氧运动提高免疫功能的机制。方法:34名健康青年男性随机分为运动组(n=16)和对照组(n=18),运动组进行每周3次共12周的有氧运动干预,对照组保持日常生活习惯不变。实验前后分别测定淋巴细胞凋亡率、淋巴细胞线粒体和细胞核8-羟鸟嘌呤(8-oxoguanine,8-oxoG)、8-羟鸟嘌呤DNA糖基化酶α(8-oxoguanine DNAglycosylaseα,OGG1α)和OGG1β蛋白表达量。结果:两组基础值均无显著性差异。与实验前比较,实验后运动组淋巴细胞凋亡率显著性降低(5.10±0.89 vs 3.64±1.07,P<0.01),线粒体与细胞核8-oxoG均显著性降低(线粒体:8.75±1.85 vs 5.16±0.86,P<0.01;细胞核:3.93±1.35 vs 2.13±0.51,P<0.01),OGG1α和OGG1β均显著性升高(OGG1α:1.26±0.39 vs 2.31±0.42,P<0.01;OGG1β:0.83±0.17 vs 1.45±0.48,P<0.01),而对照组各指标均无显著性变化(均为P>0.05)。结论:规律有氧运动上调了淋巴细胞线粒体与细胞核DNA修复酶的表达量,降低了DNA氧化损伤,淋巴细胞凋亡率随之降低。
文摘Organelle genomics has become its own field of study. Much information can be gleaned from the study of cell organelles. The differences in the genomes of organelles, such as the mitochondrion and the chloroplast are amenable to phylogenetic and cladistic studies. These differences include the genome sequence, GC%, genome length and gene order. The conserved nature of the organelle genomes and the gene inventory of both mitochondrial and chloroplast genomes also make this easier to accomplish. This paper includes a review of existing organelle genome software. These include gene annotation and genome visualization tools as well as organelle gene databases for both mitochondrion and plastid. A new R tool, available on github, called “Organelle DNA Lineages”, or ODL, was written to compare and classify organelle genomes based on their genome sequence and gene order. The software was run on the mitochondrial genomes of a set of 51 cephalopod species, delineating ten separate monophyletic groups, including argonauts, nautiluses, octopuses, cuttlefish, and six squid groups. This new tool can help enrich and expand the field of organelle genomics.