BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Blac...The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.展开更多
In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of...In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such tha...The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase(MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment.展开更多
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p...AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.展开更多
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest...AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.展开更多
AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epit...AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins. RESULTS: Incubation with H pylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after in- cubation with H pylori extract and appeared to be a sus- tained event. MAPK/ERK kinase (MEK) inhibitor PD98059 abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pylori extract increased c-Fos expression and SRE-dependent gene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract. CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal trans- duction cascade.展开更多
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ...Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.展开更多
Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis ...Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis.展开更多
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp...Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.展开更多
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp...The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.展开更多
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigeni...BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigenin suppressed pulmonary fibrosis induced by PQ.We wondered whether arctigenin could also have a protective eff ect on PQ-induced ALI.METHODS:A PQ-induced A549 cell injury model was used,and the effect of arctigenin was determined by a cell counting kit-8(CCK-8)cell viability assay.In addition,terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labelling(TUNEL)staining assays and mitochondrial membrane potential assays were performed to evaluate the level of cell apoptosis.The generation of reactive oxygen species(ROS)was refl ected by dihydroethidium(DHE)staining and a 2’,7’-dichlorodihy drofluorescein diacetate(DCFH-DA)assay.Moreover,immunoblotting studies were used to assess the expression of mitogen-activated protein kinases(MAPKs)and p38 MAPK.RESULTS:Arctigenin attenuated PQ-induced inhibition of A549 cell viability in a dose-dependent manner.Arctigenin also significantly reduced PQ-induced A549 cell apoptosis,as refl ected by the TUNEL assay and mitochondrial membrane potential assay,which may result from suppressed ROS/p38 MAPK signaling because we found that arctigenin dramatically suppressed ROS generation and p38 MAPK phosphorylation.CONCLUSION:Arctigenin could attenuate PQ-induced lung epithelial A549 cell injury in vitro by suppressing ROS/p38 MAPK-mediated cell apoptosis,and arctigenin might be considered a potential candidate drug for PQ-induced ALI.展开更多
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t...To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation.展开更多
Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelic...Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon.In the current study,we examined the protective mechanisms by which the peptide increased mucus synthesis in vitro.Methods Human colonic cell line(HT-29)was used to assess the stimulatory action of cathelicidin on mucus synthesis which was measured by the D-[6-3H] glucosamine incorporation assay.Results Human cathelicidin(LL-37)dose-dependently(10-40 μg·mL-1)and significantly stimulated mucus synthesis.Real-time PCR data showed that addition of LL-37 induced more than 50% increase in MUC1 and MUC2 mRNA levels.Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis.LL-37 also activated the phosphorylation of mitogen-activated protein(MAP)kinase in the cells.A specific inhibitor of the MAP kinase pathway,U0126,completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37.Conclusions Taken together LL-37 stimulates mucus synthesis through the activation of MUC1 and MUC2 expression and the MAP kinase pathway in human colonic cells.展开更多
A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depres...A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity.展开更多
The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. ...The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. HLECs-B3 were incubated in the fresh media containing sodium salicylate at different concentrations for different durations, and allowed to be recovered in fresh medium without sodium salicylate for different durations with or without pretreatment with p38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor (SP600125). The expression of P38MAPK, ERK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 was detected by Western blot. The expression of HSP27 mRNA and protein was detected by RT-PCR and immunohistochemistry respectively. It was found there was only weak expression of HSP27 in normal HLECs. The expression of HSP27 was not detectable in HLECs-B3 that were exposed to sodium salicylate (55 retool/L) for 1-5 h. It was indicated that recovery from sodium salicylate (〉35 mmol/L) significantly increased the synthesis of HSP27. The expression of HSP27 was up-regulated in HLECs-B3 under sodium salicylate recovery for 3 h, reached the peak level for 6 h, and returned to the level of control cells by 24 h. Activation of P38MAPK from sodium salicylate stimulation occurred at 30th rain, and increased significantly at 1st h, then declined and renamed to baseline level at 3rd h under sodium salicylate recovery. Activation of ERK1/2 occurred at 1st h and reached the peak level at 6th h under sodium salicylate recovery. However, JNK/SAPK was inactivated by sodium salicylate. The expression of HSP27 could be down-regulated with the pretreatment of SB203580 and PD98059 jointly. It is concluded that sodium salicylate can induce the expression of HSP27 in HLECs-B3. The effects are mediated, at least in part, through the activation of P38MAPK and ERK1/2 signaling pathway.展开更多
Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate ...Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.展开更多
Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the...Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK^specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.展开更多
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant Nos.SCX(22)3215],Fundamental Research Funds for the Central Universities(Grant No.JCQY201901)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear.
基金funded by the Natural Science Foundation of Anhui Province,China(2008085QC158)the University Natural Science Research Project of Anhui Province(KJ2019A0165)。
文摘In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
基金Supported by National Natural Science Foundation of China,No.81472208the Open Projects of State Key Laboratory of Molecular Oncology,No.SKL-KF-2015-12
文摘The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase(MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment.
基金Supported by Technology Foundation of Ministry of Education, China
文摘AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was found when stratified to tumor size or histological grade (P>0.05). Protein levels of ERK-2, ERK-3 and MEK-1 in metastatic lymph nodes were 2-7 folds higher than those in adjacent normal mucosa. The immunohistochemistry demonstrated that ERK-1, ERK-2, ERK-3, p38 and MEK-1 proteins were mainly localized in cytoplasm. The expression of MEK-1 in gastric cancer cells metastasized to lymph nodes was higher than that of the primary site. CONCLUSION: MAPKs, particularly ERK subclass are overexpressed in the majority of gastric cancers. Overexpression of ERKs is correlated to TNM staging, serosa invasion, and lymph node involvement. The overexpression of p38 most likely plays a prominent role in certain morphological subtypes of gastric cancers. MEK-1 is also overexpressed in gastric cancer, particularly in metastatic lymph nodes. Upregulation of MARK signal transduction pathways may play an important role in tumorigenesis and metastatic potential of gastric cancer.
基金Supported by the National Basic Science and Development Programme (973 Programme),No.G1999054204 National Natural Science Foundation of China, No. 30170966, 30230370 National High-Technology Programme (863 Programme), No. 2001AA215131
文摘AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.
基金Supported by the National Natural Science Foundation of China, No. 30340036 and No. 30470891 Grant from Jiangsu University and Zhenjiang Key Institute of Clinical Laboratory Medicine (SH2006066)
文摘AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins. RESULTS: Incubation with H pylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after in- cubation with H pylori extract and appeared to be a sus- tained event. MAPK/ERK kinase (MEK) inhibitor PD98059 abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pylori extract increased c-Fos expression and SRE-dependent gene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract. CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal trans- duction cascade.
文摘Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.
文摘Acute pancreatitis(AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis.
文摘Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.
文摘The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.
基金This work was supported by the National Natural Science Foundation of China(82172182 and 82102311)Social Development Projects of Jiangsu Province(BE2017720)+2 种基金Natural Science Foundation of Jiangsu Province(BK20190247)Science Foundation of Jiangsu Health Commission(H2018039)Jiangsu Postdoctoral Research Foundation(2018K048A and 2020Z193).
文摘BACKGROUND:Paraquat(PQ)-induced acute lung injury(ALI)and pulmonary fi brosis are common diseases with high mortality but without eff ective antidotes in emergency medicine.Our previous study has proved that arctigenin suppressed pulmonary fibrosis induced by PQ.We wondered whether arctigenin could also have a protective eff ect on PQ-induced ALI.METHODS:A PQ-induced A549 cell injury model was used,and the effect of arctigenin was determined by a cell counting kit-8(CCK-8)cell viability assay.In addition,terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labelling(TUNEL)staining assays and mitochondrial membrane potential assays were performed to evaluate the level of cell apoptosis.The generation of reactive oxygen species(ROS)was refl ected by dihydroethidium(DHE)staining and a 2’,7’-dichlorodihy drofluorescein diacetate(DCFH-DA)assay.Moreover,immunoblotting studies were used to assess the expression of mitogen-activated protein kinases(MAPKs)and p38 MAPK.RESULTS:Arctigenin attenuated PQ-induced inhibition of A549 cell viability in a dose-dependent manner.Arctigenin also significantly reduced PQ-induced A549 cell apoptosis,as refl ected by the TUNEL assay and mitochondrial membrane potential assay,which may result from suppressed ROS/p38 MAPK signaling because we found that arctigenin dramatically suppressed ROS generation and p38 MAPK phosphorylation.CONCLUSION:Arctigenin could attenuate PQ-induced lung epithelial A549 cell injury in vitro by suppressing ROS/p38 MAPK-mediated cell apoptosis,and arctigenin might be considered a potential candidate drug for PQ-induced ALI.
基金This project was supported by a grant from the NationalKey Science and Technology Program of the Tenth Five-years-Plan (No .2004BA720A11) ,and a grant from Nation-al Natural Sciences Foundation of China (No .30471824)
文摘To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation.
文摘Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon.In the current study,we examined the protective mechanisms by which the peptide increased mucus synthesis in vitro.Methods Human colonic cell line(HT-29)was used to assess the stimulatory action of cathelicidin on mucus synthesis which was measured by the D-[6-3H] glucosamine incorporation assay.Results Human cathelicidin(LL-37)dose-dependently(10-40 μg·mL-1)and significantly stimulated mucus synthesis.Real-time PCR data showed that addition of LL-37 induced more than 50% increase in MUC1 and MUC2 mRNA levels.Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis.LL-37 also activated the phosphorylation of mitogen-activated protein(MAP)kinase in the cells.A specific inhibitor of the MAP kinase pathway,U0126,completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37.Conclusions Taken together LL-37 stimulates mucus synthesis through the activation of MUC1 and MUC2 expression and the MAP kinase pathway in human colonic cells.
基金the National Natural Science Foundation of China, No. 30973732
文摘A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity.
文摘The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. HLECs-B3 were incubated in the fresh media containing sodium salicylate at different concentrations for different durations, and allowed to be recovered in fresh medium without sodium salicylate for different durations with or without pretreatment with p38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor (SP600125). The expression of P38MAPK, ERK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 was detected by Western blot. The expression of HSP27 mRNA and protein was detected by RT-PCR and immunohistochemistry respectively. It was found there was only weak expression of HSP27 in normal HLECs. The expression of HSP27 was not detectable in HLECs-B3 that were exposed to sodium salicylate (55 retool/L) for 1-5 h. It was indicated that recovery from sodium salicylate (〉35 mmol/L) significantly increased the synthesis of HSP27. The expression of HSP27 was up-regulated in HLECs-B3 under sodium salicylate recovery for 3 h, reached the peak level for 6 h, and returned to the level of control cells by 24 h. Activation of P38MAPK from sodium salicylate stimulation occurred at 30th rain, and increased significantly at 1st h, then declined and renamed to baseline level at 3rd h under sodium salicylate recovery. Activation of ERK1/2 occurred at 1st h and reached the peak level at 6th h under sodium salicylate recovery. However, JNK/SAPK was inactivated by sodium salicylate. The expression of HSP27 could be down-regulated with the pretreatment of SB203580 and PD98059 jointly. It is concluded that sodium salicylate can induce the expression of HSP27 in HLECs-B3. The effects are mediated, at least in part, through the activation of P38MAPK and ERK1/2 signaling pathway.
基金the General Program of National Natural Science Foundation of China, No.90709034
文摘Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.
基金supported by the Scientific and Technical Innovation Fund of Shanxi Medical University,No.01200802Shanxi Province Foundation for Returnees,No.2007-43
文摘Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK^specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.