Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study...Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.展开更多
In this paper, we investigate the nonparametric regression model based on ρ-mixing errors, which are stochastically dominated by a nonnegative random variable. Weobtain the convergence rate for the weighted estimator...In this paper, we investigate the nonparametric regression model based on ρ-mixing errors, which are stochastically dominated by a nonnegative random variable. Weobtain the convergence rate for the weighted estimator of unknown function g(x) in pth-mean, which yields the convergence rate in probability. Moreover, an example of the nearestneighbor estimator is also illustrated and the convergence rates of estimator are presented.展开更多
In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations amo...In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.展开更多
We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that th...We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.展开更多
The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction ...The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F^rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.展开更多
A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order...A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10^-2 m^2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10^-6 m^2/s), the eddy diffusivity increased with depth, and its largest value was O(10^-3 m^2/s).展开更多
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline str...Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.展开更多
Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low temperature and near neutral p H were lacking...Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low temperature and near neutral p H were lacking. The rate equation by Palandri and Kharaka(A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geological Survey, Open File Report 2004-1068, 2004) indicates that the rate of kyanite dissolution at room temperature and near neutral pH is on the order of 10^-17 mol m^-2 s^-1, orders of magnitudes slower than most common silicate minerals such as albite and quartz. This study used an externallystirred mixed-flow reactor, which allows high solid:solution ratios, to measure the dissolution rate of kyanite at 0–22 ℃ and pH of 3.5–7.5. The measured dissolution rate of kyanite is 4.6–7.6 9 10-13 mol m^-2 s^-1 at 22℃, and the apparent activation energy is 73.5 kJ mol^-1. This dissolution rate is close to the rate of quartz dissolution and four orders of magnitude faster than the prediction by rate equation of Palandri and Kharaka(2004).Based on our new experimental data, we recommend the following rate equation for modeling the dissolution of kyanite at ambient temperatures.r=ke(-Ea)/R(1/T-1/(298.15))where k = 5.08 9 10-13 mol m^-2 s^-1, and Ea= 73.5 kJ mol^-1. Review of literature data(Carroll in The dissolution behavior of corundum, kaolinite, and andalusite: a surface complex reaction model for the dissolution of aluminosilicate minerals in diagenetic and weathering environs. Dissertation, Northwestern University, 1989) led to a recommended rate equation for andalusite as for T = 25℃ and pH = 2–10:r=k1aH+^n1+k2+k3aH^+^n3where k1= 4.04 9 10^-10 mol m^-2 s^-1, k2= 7.95×10^-10 mol m^-2 s^-1, k3= 1.01×10^-17 mol m^-2 s^-1, n1= 1.2 and n3=-0.6.展开更多
Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the l...Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the laserinduced planar laser Mie scattering (PLMS) technique. Two methods are developed to investigate the spatial distribu- tion and geometry of IWS: (1) the dominant mode extrac- tion (DME) method, to extract the dominant modes of IWS from the streamwise gray-level fluctuation, and (2) the phase tracking (PT) method, to identify the shape of IWS. The re- sults suggest that pressure perturbations account for the for- marion of IWS in the initial mixing region and the joint effect of dilatation and coherent vortices enhances IWS in the well- developed region. The large transverse (cross-flow) scale of the IWS and their relation to coherent vortices (CV) indicate that the disturbance originated from CV in the mixing center propagates far into the free streams. The DME and the PT method are shown to be the effective tools to study the geometrical features of wavy structures in compressible shear flows.展开更多
Cubic equations of state EOS have been combined with the absolute rate theory of Eyring to calculate viscosities of liquid mixtures. A modified Huron-Vidal gE-mixing rule is employed in the calculation and in com- par...Cubic equations of state EOS have been combined with the absolute rate theory of Eyring to calculate viscosities of liquid mixtures. A modified Huron-Vidal gE-mixing rule is employed in the calculation and in com- parison with the van Laar and the Redlich-Kister-type mixing rule. The EOS method gives an accurate correlation of liquid viscosities with an overall average deviation less than 1% for 67 binary systems including aqueous solu- tions. It is also successful in extrapolating viscosity data over a certain temperature range using parameters obtained from the isotherm at a given temperature and in predicting viscosities of ternary solutions from binary parameters for either polar or associated systems.展开更多
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in...The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.展开更多
Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulen...Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.展开更多
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimatio...Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha-1,43.6–63.6 m2ha-1and 6,675–8400 tree ha-1,respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha-1a-1,and 7.2 g a-1,respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.展开更多
An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coup...An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.展开更多
In this paper, we study the strong consistency and convergence rate for modified partitioning estimation of regression function under samples that are ψ-mixing with identically distribution.
This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing...This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing conditions. A Berry-Esseen bound of frequency polygon is established and the convergence rates of asymptotic normality are derived. In particularly, for the optimal bin width , it is showed that the convergence rate of asymptotic normality reaches to ?when mixing coefficient tends to zero exponentially fast.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51064017 and 51464031)
文摘Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.
基金Supported by National Natural Science Foundation of China(11426032,11501005)Natural Science Foundation of Anhui Province(1408085QA02,1508085QA01,1508085J06)+5 种基金Provincial Natural Science Research Project of Anhui Colleges(KJ2014A010,KJ2014A020,KJ2015A065)Higher Education Talent Revitalization Project of Anhui Province(2013SQRL005ZD)Quality Engineering Project of Anhui Province(2015jyxm054,2015jyxm057)Students Science Research Training Program of Anhui University(KYXL2014016,KYXL2014013)Applied Teaching Model Curriculum of Anhui University(XJYYKC1401,ZLTS2015052,ZLTS2015053)Doctoral Research Start-up Funds Projects of Anhui University
文摘In this paper, we investigate the nonparametric regression model based on ρ-mixing errors, which are stochastically dominated by a nonnegative random variable. Weobtain the convergence rate for the weighted estimator of unknown function g(x) in pth-mean, which yields the convergence rate in probability. Moreover, an example of the nearestneighbor estimator is also illustrated and the convergence rates of estimator are presented.
文摘In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-03)China National Funds for Distinguished Young Scientists, National High Technology Research and Development Program of China (863 Program) (Nos.2008AA09Z112,2008AA09A402)+1 种基金National Natural Science Foundation of China (No.40676021)the Chinese Oceanic Association (No.DYXM-115-02-4-02)
文摘We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.
基金supported by the Chinese National Key Basic Research Program(2010CB950301)National Natural Science Foundation of China(NSFC)(Grant No.41276200)+3 种基金the Special Program for China Meteorology Trade(Grant No.GYHY201306020)the Scientific Research Foundation for the Introduction of Talent of Nanjing University of Information Science and Technology(S8112066001)General University Science Research Project of Jiangsu Province(13KJB170019)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F^rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.
基金The "CAS/SAFEA International Partnership Program for Creative Research Teams" of Chinese Academy of Seiences under contract Nos XDA11010202,2013CB430303 and 41376022,41276021 and 41276023
文摘A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10^-2 m^2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10^-6 m^2/s), the eddy diffusivity increased with depth, and its largest value was O(10^-3 m^2/s).
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-01-01and CHINARE-04-01
文摘Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.
基金provided by the U.S. NSF Grant EAR-1225733 to Dr. Chen Zhu, and Indiana University
文摘Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low temperature and near neutral p H were lacking. The rate equation by Palandri and Kharaka(A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geological Survey, Open File Report 2004-1068, 2004) indicates that the rate of kyanite dissolution at room temperature and near neutral pH is on the order of 10^-17 mol m^-2 s^-1, orders of magnitudes slower than most common silicate minerals such as albite and quartz. This study used an externallystirred mixed-flow reactor, which allows high solid:solution ratios, to measure the dissolution rate of kyanite at 0–22 ℃ and pH of 3.5–7.5. The measured dissolution rate of kyanite is 4.6–7.6 9 10-13 mol m^-2 s^-1 at 22℃, and the apparent activation energy is 73.5 kJ mol^-1. This dissolution rate is close to the rate of quartz dissolution and four orders of magnitude faster than the prediction by rate equation of Palandri and Kharaka(2004).Based on our new experimental data, we recommend the following rate equation for modeling the dissolution of kyanite at ambient temperatures.r=ke(-Ea)/R(1/T-1/(298.15))where k = 5.08 9 10-13 mol m^-2 s^-1, and Ea= 73.5 kJ mol^-1. Review of literature data(Carroll in The dissolution behavior of corundum, kaolinite, and andalusite: a surface complex reaction model for the dissolution of aluminosilicate minerals in diagenetic and weathering environs. Dissertation, Northwestern University, 1989) led to a recommended rate equation for andalusite as for T = 25℃ and pH = 2–10:r=k1aH+^n1+k2+k3aH^+^n3where k1= 4.04 9 10^-10 mol m^-2 s^-1, k2= 7.95×10^-10 mol m^-2 s^-1, k3= 1.01×10^-17 mol m^-2 s^-1, n1= 1.2 and n3=-0.6.
基金supported by National Nature Science Foundation of China(90716008,10572004,and 11172006)by MOST 973 Project(2009CB724100)
文摘Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the laserinduced planar laser Mie scattering (PLMS) technique. Two methods are developed to investigate the spatial distribu- tion and geometry of IWS: (1) the dominant mode extrac- tion (DME) method, to extract the dominant modes of IWS from the streamwise gray-level fluctuation, and (2) the phase tracking (PT) method, to identify the shape of IWS. The re- sults suggest that pressure perturbations account for the for- marion of IWS in the initial mixing region and the joint effect of dilatation and coherent vortices enhances IWS in the well- developed region. The large transverse (cross-flow) scale of the IWS and their relation to coherent vortices (CV) indicate that the disturbance originated from CV in the mixing center propagates far into the free streams. The DME and the PT method are shown to be the effective tools to study the geometrical features of wavy structures in compressible shear flows.
基金the Deutsche Forschungsgemeinschaft (LE 886/4-1) the Foundation of Zhejiang Province for ScholarsReturned from Abroad
文摘Cubic equations of state EOS have been combined with the absolute rate theory of Eyring to calculate viscosities of liquid mixtures. A modified Huron-Vidal gE-mixing rule is employed in the calculation and in com- parison with the van Laar and the Redlich-Kister-type mixing rule. The EOS method gives an accurate correlation of liquid viscosities with an overall average deviation less than 1% for 67 binary systems including aqueous solu- tions. It is also successful in extrapolating viscosity data over a certain temperature range using parameters obtained from the isotherm at a given temperature and in predicting viscosities of ternary solutions from binary parameters for either polar or associated systems.
基金The National Natural Science Foundation of China under contract Nos 41476009,41776034 and 41476010the Natural Science Foundation of Guangdong Province of China under contract No.2016A030312004+1 种基金the Global Air-Sea Interaction Project of State Oceanic Administration under contract No.GASI-IPOVAI-01-02the Laboratory of Tropical Ocean Open Foundation under contract No.LT1404
文摘The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity Kρ is O(10–6 m2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to Kρ≈O(10–4 m2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.
文摘Determination of turbulent mixing rate of two phase flow between neighboring subchannels is an important aspect of sub channel analysis in reactor rod bundles. Various models have been developed for two phase turbulent mixing rate between subchannels. These models show that turbulent mixing rate is strongly dependent on flow regimes;their validity was examined against specific or limited experiments. It is vital to evaluate these models by comparing the predicted two phase turbulent mixing rate with available experimental data conducted for various subchannel geometries and operating conditions. This paper describes evaluation of different models for two phase turbulent mixing rate for both gas and liquid phase against large range of experimental data which are obtained from various subchannel geometries. The results indicate that there is large discrepancy between the predicted and experimental data for turbulent mixing rate. This paper provides important shortcoming of the previous work and need for the development of a new model. In the view of this, a two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent sub channels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data.
基金supported by research grants from the Korea Forest Service(S121314L130100)
文摘Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha-1,43.6–63.6 m2ha-1and 6,675–8400 tree ha-1,respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha-1a-1,and 7.2 g a-1,respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.
基金The work was financially supported by a research grant from University of Science and Technology Beijing (No.20020611590).
文摘An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.
基金The Science Research Fundation (041002F) of Hefei University of Technology.
文摘In this paper, we study the strong consistency and convergence rate for modified partitioning estimation of regression function under samples that are ψ-mixing with identically distribution.
文摘This paper is to investigate the convergence rate of asymptotic normality of frequency polygon estimation for density function under mixing random fields, which include strongly mixing condition and some weaker mixing conditions. A Berry-Esseen bound of frequency polygon is established and the convergence rates of asymptotic normality are derived. In particularly, for the optimal bin width , it is showed that the convergence rate of asymptotic normality reaches to ?when mixing coefficient tends to zero exponentially fast.