A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid...A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.展开更多
In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi...In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.展开更多
Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to inve...Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to invest in the construction of oil and gas infrastructures in the country.With China's growing economy and new reforms in the oil and gas sector,more opportunities are available for private companies seeking to get involved in energy infrastructure.It is estimated that the future market of energy infrastructure projects in China is valued at nearly RMB 2 trillion.This paper is trying to offer some clues regarding investment in energy infrastructure in China by giving a brief introduction to the current situation of CNPC's oil and gas infrastructure construction.展开更多
In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities...In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.展开更多
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba...Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.展开更多
In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in t...In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.展开更多
Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from f...Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting展开更多
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover...Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.展开更多
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should ...As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should have a new shape. Implementing the largest infrastructure projects and creating on this basis a modern transportation network will not only see a new reincarnation of traditional industrial centers, but also open wider opportunities for regional development.展开更多
Oil and gas storage and transportation safety courses are very important in oil and gas storage and transportation engineering.With the ideological and political construction of the course in the new period,the mode o...Oil and gas storage and transportation safety courses are very important in oil and gas storage and transportation engineering.With the ideological and political construction of the course in the new period,the mode of professional knowledge teaching cannot meet the teaching requirements.The teaching team has been practicing in the course for many years.By inserting typical characters,typical projects,national policies and industry trends into the course,students'patriotism,academic confidence and environmental protection awareness have been cultivated,and remarkable results have been achieved.At the same time,it can provide some reference for the ideological and political education of engineering majors.展开更多
An inherent problem with both oil and natural gas production is the deposition of sand particles in pipeline,which could lead to problems such as excessive pressure drops,equipment failure,pipeline erosion,and product...An inherent problem with both oil and natural gas production is the deposition of sand particles in pipeline,which could lead to problems such as excessive pressure drops,equipment failure,pipeline erosion,and production decline.The characterization of sand particles transport and sedimentation in different flow systems such as sandemultiphase mixtures is vital to predict the sand transport velocity and entrainment processes in oil and gas transportation pipelines.However,it seems that no model exists able to accurately characterize the sand transport and deposition in multiphase pipeline.In fact,in the last decade several researchers tried to extend the modeling of liquid-solid flow to gas-liquid-solid flow,but no significant results have been obtained,especially in slug flow condition due to the complexity of the phenomenon.In order to develop and validate a mathematical model properly formulated for the calculation of the sand critical deposition velocity in gas-liquid flow,more and more experimental data are necessary.This paper presents a preliminary experimental study of three phase flows(air-water-sand)inside a horizontal pipe and the application of the sand-liquid models present in literature.Significant observations were made during the experimental study from which several conclusions were drawn.Different sand flow regimes were established by physical observation and data analysis:fully dispersed solid flow,moving dunes and stationary bed.The critical deposition velocities were determined at different sand concentrations.It was concluded that sand transport characteristics and the critical deposition velocity are strongly dependent on the gas-liquid flow regime and on sand concentration.展开更多
基金Supported by National Natural Science Foundation of China(52274020,U21B2069,52288101)General Program of the Shandong Natural Science Foundation(ZR2020ME095)National Key Research and Development Program(2021YFC2800803).
文摘A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.
文摘In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.
文摘Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to invest in the construction of oil and gas infrastructures in the country.With China's growing economy and new reforms in the oil and gas sector,more opportunities are available for private companies seeking to get involved in energy infrastructure.It is estimated that the future market of energy infrastructure projects in China is valued at nearly RMB 2 trillion.This paper is trying to offer some clues regarding investment in energy infrastructure in China by giving a brief introduction to the current situation of CNPC's oil and gas infrastructure construction.
文摘In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.
基金supported by the National Natural Science Foundation of China(Grant No.52004030)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202310016003)the Exchange Program of High-end Foreign Experts of Ministry of Science and Technology,China(Grant No.G2022178013L)。
文摘Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk.
文摘In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.
文摘Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting
基金Jointly funded by a major research plan of National Natural Science Foundation of China(51991365)titled“Multi-Field Spatial-Temporal Evolution Laws of Phase Transition and Seepage of Natural Gas Hydrate in Reservoirs”and a geological survey project initiated by China Geological Survey(DD20190226)titled“Implementation of Natural Gas Hydrate Production Test in Pilot Test Area in Shenhu Area”.
文摘Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
文摘As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should have a new shape. Implementing the largest infrastructure projects and creating on this basis a modern transportation network will not only see a new reincarnation of traditional industrial centers, but also open wider opportunities for regional development.
文摘Oil and gas storage and transportation safety courses are very important in oil and gas storage and transportation engineering.With the ideological and political construction of the course in the new period,the mode of professional knowledge teaching cannot meet the teaching requirements.The teaching team has been practicing in the course for many years.By inserting typical characters,typical projects,national policies and industry trends into the course,students'patriotism,academic confidence and environmental protection awareness have been cultivated,and remarkable results have been achieved.At the same time,it can provide some reference for the ideological and political education of engineering majors.
文摘An inherent problem with both oil and natural gas production is the deposition of sand particles in pipeline,which could lead to problems such as excessive pressure drops,equipment failure,pipeline erosion,and production decline.The characterization of sand particles transport and sedimentation in different flow systems such as sandemultiphase mixtures is vital to predict the sand transport velocity and entrainment processes in oil and gas transportation pipelines.However,it seems that no model exists able to accurately characterize the sand transport and deposition in multiphase pipeline.In fact,in the last decade several researchers tried to extend the modeling of liquid-solid flow to gas-liquid-solid flow,but no significant results have been obtained,especially in slug flow condition due to the complexity of the phenomenon.In order to develop and validate a mathematical model properly formulated for the calculation of the sand critical deposition velocity in gas-liquid flow,more and more experimental data are necessary.This paper presents a preliminary experimental study of three phase flows(air-water-sand)inside a horizontal pipe and the application of the sand-liquid models present in literature.Significant observations were made during the experimental study from which several conclusions were drawn.Different sand flow regimes were established by physical observation and data analysis:fully dispersed solid flow,moving dunes and stationary bed.The critical deposition velocities were determined at different sand concentrations.It was concluded that sand transport characteristics and the critical deposition velocity are strongly dependent on the gas-liquid flow regime and on sand concentration.