This article analyzes the characteristics of PON and WiMAX convergence network planning.Based on user coverage ratio,WiMAX channel allocation,cell radius,carrier-to-noise ratio threshold,and bandwidth constraint,we pr...This article analyzes the characteristics of PON and WiMAX convergence network planning.Based on user coverage ratio,WiMAX channel allocation,cell radius,carrier-to-noise ratio threshold,and bandwidth constraint,we propose a mixed integer programming model solved by a Branch-Band and Heuristic Search method.Finally,the simulation result is given and analyzed.The planning method based on a mixed integer programming model can save 20 percentage of the overall planning cost,compared with the greedy algorithm.The relationship between the convergence network planning cost and frequency usage is also analyzed.The optimized planning result with the lowest cost can be acquired through the best frequency usage.展开更多
This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previou...This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previous sequential solution approaches, the problems are herein solved at the same time. Furthermore, the proposed approach guarantees practical solutions because it considers ore material distribution within orebody. The paper has two main contributions: (a) the proposed approach generates production rates in a manner that the capacities are satisfied; (b) the proposed approach does not use pre-defined marginal cut-off grades. Thus, idle capacity problem is eliminated and different scheduling combinations are allowed. To see the performance of the approach proposed, a case study is carried out using a gold data. The schedule generated shows that the approach can determine optimal production rates, block destination and sequencing effectively.展开更多
With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requireme...With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.展开更多
基金supported by National High Technical Research and Development Program of China(863 program)under Grant No.2009AA01A345Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0402
文摘This article analyzes the characteristics of PON and WiMAX convergence network planning.Based on user coverage ratio,WiMAX channel allocation,cell radius,carrier-to-noise ratio threshold,and bandwidth constraint,we propose a mixed integer programming model solved by a Branch-Band and Heuristic Search method.Finally,the simulation result is given and analyzed.The planning method based on a mixed integer programming model can save 20 percentage of the overall planning cost,compared with the greedy algorithm.The relationship between the convergence network planning cost and frequency usage is also analyzed.The optimized planning result with the lowest cost can be acquired through the best frequency usage.
文摘This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previous sequential solution approaches, the problems are herein solved at the same time. Furthermore, the proposed approach guarantees practical solutions because it considers ore material distribution within orebody. The paper has two main contributions: (a) the proposed approach generates production rates in a manner that the capacities are satisfied; (b) the proposed approach does not use pre-defined marginal cut-off grades. Thus, idle capacity problem is eliminated and different scheduling combinations are allowed. To see the performance of the approach proposed, a case study is carried out using a gold data. The schedule generated shows that the approach can determine optimal production rates, block destination and sequencing effectively.
基金Supported in part by the National High Technology Research and Development Program of China(2012AA041701)the National Natural Science Foundation of China(61320106009) the 111 Project of China(B07031)
文摘With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.