The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which...The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.展开更多
In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered t...The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered two-dimensional(2 D)decagonal QC rectangular plate with mixed boundary conditions.Based on the elastic theory of FG 2 D QCs,the state-space method is used to derive the state equations composed of partial differential along the thickness direction.Besides,the Fourier series expansion and the differential quadrature technique are utilized to simulate the simply supported boundary conditions and the mixed boundary conditions,respectively.Then,the propagator matrix which connects the field variables at the upper interface to those at the lower interface of any homogeneous layer can be derived based on the state equations.Combined with the interface continuity condition,the static response can be obtained by imposing the sinusoidal load on the top surfaces of laminates.Finally,the numerical examples are presented to verify the effectiveness of this method,and the results are very useful for the design and understanding of the characterization of FG QC materials in their applications to multilayered systems.展开更多
Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,whic...Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,which is a generalization of the results of Lichnerowicz,Reilly,Escobar and Xia.It is also proved that η 1≥n for certain n-dimensional compact Riemannian manifolds with boundary,which is an extension of the work of Cheng,Li and Yau.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the s...Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the scalar λ is an eigenvalue of (P) if展开更多
The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the conc...The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the concise matrix expressions of the Stroh formalism are destroyed.We present a generalized Stroh formalism which is applicable to a class of general boundary conditions.The general boundary conditions in- clude the simple and slippery boundary conditions as special cases.For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed,a free,a slippery, or other more general boundary.For the Griffith crack in the infinite space,the crack can be a slit-like crack with free surfaces,a rigid line inclusion(which is sometimes called an anticrack),or a rigid line with slippery surface or with other general surface conditions.It is worth mention that the modifications required on the Stroh formalism are minor.The generalized formalism and the final solutions look very similar to those of unmodified version.Yet the results are applicable to a rather wide range of boundary conditions.展开更多
In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear pr...In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear problems with non-uniform boundary conditions by means of the wavelet Galerkin technique, especially in the field of fluid mechanics and heat transfer. The lid-driven cavity flow and heat transfer are illustrated as a typical example to verify the validity and correctness of this proposed technique. The cavity is subject to the upper and lower walls’ motions in the same or opposite directions.The inclined angle of the square cavity is from 0 to π/2. Four different modes including uniform, linear, exponential, and sinusoidal heating are considered on the top and bottom walls, respectively, while the left and right walls are thermally isolated and stationary.A parametric analysis of heating distribution between upper and lower walls including the amplitude ratio from 0 to 1 and the phase deviation from 0 to 2π is conducted. The governing equations are non-dimensionalized in terms of the stream function-vorticity formulation and the temperature distribution function and then solved analytically subject to various boundary conditions. Comparisons with previous publications are given,showing high efficiency and great feasibility of the proposed technique.展开更多
This note introduces the double flip move to accelerate the Swendsen-Wang algorithm for Ising models with mixed boundary conditions below the critical temperature.The double flip move consists of a geometric flip of t...This note introduces the double flip move to accelerate the Swendsen-Wang algorithm for Ising models with mixed boundary conditions below the critical temperature.The double flip move consists of a geometric flip of the spin lattice followed by a spin value flip.Both symmetric and approximately symmetric models are considered.We prove the detailed balance of the double flip move and demonstrate its empirical efficiency in mixing.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
The heat and mass transfer of unsteady MHD two-dimensional mixed convection boundary layer flow over an exponentially porous stretching sheet is presented in this paper. Multiple slip conditions, radiation, suction or...The heat and mass transfer of unsteady MHD two-dimensional mixed convection boundary layer flow over an exponentially porous stretching sheet is presented in this paper. Multiple slip conditions, radiation, suction or blowing, heat generation or absorption along with magnetism and porous medium are incorporated. We reduce the leading equations which are partial differential equations into a family of ordinary differential equations that are non-linear using a set of similarity transformations. The resulting equations with coupled boundary conditions are solved numerically with the aid of bvp4c solver with MATLAB package. The impacts of several non-dimensional governing parameters on the flow fields such as velocity, temperature and concentration profiles along with friction coefficient, temperature gradient and concentration gradient are portrayed graphically and discussed in detail. The result indicates that the magnetic parameter decreases the skin friction coefficient. Thermal boundary layer thickness reduces with increasing radiation parameters and enhances with increasing Prandtl number. It is also observed that the thermal slip parameter depreciates the heat transfer rate and the mass slip parameter diminishes the mass transfer rate. A comparison has been made between the current results and the numerical results of previous studies and observed a very close good agreement.展开更多
Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the...Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the uegative Laplacian -Δ= -Σ<sub>β=1</sub><sup>2</sup>(/x<sup>β</sup>)<sup>2</sup> in the (x<sup>1</sup>, x<sup>2</sup>)-plane. is studied for a general bounded domain Ω with a smooth boundary Ω. where a finite number of Dirichlet. Neumann and Robin boundary conditions, on the piecewise smooth parts Γ<sub>i</sub>(i=1, ..., n) of )Ω such that)Ω=∪<sub>i=1</sub><sup>n</sup>Γ<sub> </sub>are considered. Some geometrical properties associated with Ω are determined展开更多
The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation...The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.展开更多
This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on ...This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on an arbitrarily given subdomain or subboundary.展开更多
The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attra...The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attracts attention from many researchers.In this paper,using the technique developed by the authors in recent works we construct iterative method for a problem with complicated mixed boundary conditions for biharmonic equation which is originated from nanofluidic physics.The convergence rate of the method is proved and some numerical experiments are performed for testing its dependence on a parameter appearing in boundary conditions and on the position of the point where a transmission of boundary conditions occurs.展开更多
This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann con...This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.展开更多
For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions ac...For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.展开更多
The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives ...The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives of the unknown to two. The result is an equivalent mixed variational problem which was solved using bilinear finite elements. The primary advantage is that special finite elements are not needed on the adjacent layer of the artificial boundary for the higher-order derivatives. Error estimates are obtained for some local artificial boundary conditions with prescibed orders. A numerical example demonstrates the effectiveness of this method.展开更多
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
基金supported by the National Natural Science Foundation of China(51078150)the National Natural Science Foundation of China(11602087)+1 种基金the State Key Laboratory of Subtropical Building Science,South China University of Technology(2017ZB32)National Undergraduate Innovative and Entrepreneurial Training Program(201810561180).
文摘The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
文摘The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11972354,11972365,12102458)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered two-dimensional(2 D)decagonal QC rectangular plate with mixed boundary conditions.Based on the elastic theory of FG 2 D QCs,the state-space method is used to derive the state equations composed of partial differential along the thickness direction.Besides,the Fourier series expansion and the differential quadrature technique are utilized to simulate the simply supported boundary conditions and the mixed boundary conditions,respectively.Then,the propagator matrix which connects the field variables at the upper interface to those at the lower interface of any homogeneous layer can be derived based on the state equations.Combined with the interface continuity condition,the static response can be obtained by imposing the sinusoidal load on the top surfaces of laminates.Finally,the numerical examples are presented to verify the effectiveness of this method,and the results are very useful for the design and understanding of the characterization of FG QC materials in their applications to multilayered systems.
基金Research supported by the National Natural Science Foundation of China( 1 0 2 31 0 1 0 ) Trans- CenturyTraining Programme Foundation for Talents by the Ministry of Education of ChinaNatural ScienceFoundation of Zhejiang provinc
文摘Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,which is a generalization of the results of Lichnerowicz,Reilly,Escobar and Xia.It is also proved that η 1≥n for certain n-dimensional compact Riemannian manifolds with boundary,which is an extension of the work of Cheng,Li and Yau.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
基金The NNSF (10025107) of China and the 973 Projects.
文摘Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the scalar λ is an eigenvalue of (P) if
文摘The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the concise matrix expressions of the Stroh formalism are destroyed.We present a generalized Stroh formalism which is applicable to a class of general boundary conditions.The general boundary conditions in- clude the simple and slippery boundary conditions as special cases.For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed,a free,a slippery, or other more general boundary.For the Griffith crack in the infinite space,the crack can be a slit-like crack with free surfaces,a rigid line inclusion(which is sometimes called an anticrack),or a rigid line with slippery surface or with other general surface conditions.It is worth mention that the modifications required on the Stroh formalism are minor.The generalized formalism and the final solutions look very similar to those of unmodified version.Yet the results are applicable to a rather wide range of boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11272209,11432009,and 11872241)
文摘In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear problems with non-uniform boundary conditions by means of the wavelet Galerkin technique, especially in the field of fluid mechanics and heat transfer. The lid-driven cavity flow and heat transfer are illustrated as a typical example to verify the validity and correctness of this proposed technique. The cavity is subject to the upper and lower walls’ motions in the same or opposite directions.The inclined angle of the square cavity is from 0 to π/2. Four different modes including uniform, linear, exponential, and sinusoidal heating are considered on the top and bottom walls, respectively, while the left and right walls are thermally isolated and stationary.A parametric analysis of heating distribution between upper and lower walls including the amplitude ratio from 0 to 1 and the phase deviation from 0 to 2π is conducted. The governing equations are non-dimensionalized in terms of the stream function-vorticity formulation and the temperature distribution function and then solved analytically subject to various boundary conditions. Comparisons with previous publications are given,showing high efficiency and great feasibility of the proposed technique.
文摘This note introduces the double flip move to accelerate the Swendsen-Wang algorithm for Ising models with mixed boundary conditions below the critical temperature.The double flip move consists of a geometric flip of the spin lattice followed by a spin value flip.Both symmetric and approximately symmetric models are considered.We prove the detailed balance of the double flip move and demonstrate its empirical efficiency in mixing.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
文摘The heat and mass transfer of unsteady MHD two-dimensional mixed convection boundary layer flow over an exponentially porous stretching sheet is presented in this paper. Multiple slip conditions, radiation, suction or blowing, heat generation or absorption along with magnetism and porous medium are incorporated. We reduce the leading equations which are partial differential equations into a family of ordinary differential equations that are non-linear using a set of similarity transformations. The resulting equations with coupled boundary conditions are solved numerically with the aid of bvp4c solver with MATLAB package. The impacts of several non-dimensional governing parameters on the flow fields such as velocity, temperature and concentration profiles along with friction coefficient, temperature gradient and concentration gradient are portrayed graphically and discussed in detail. The result indicates that the magnetic parameter decreases the skin friction coefficient. Thermal boundary layer thickness reduces with increasing radiation parameters and enhances with increasing Prandtl number. It is also observed that the thermal slip parameter depreciates the heat transfer rate and the mass slip parameter diminishes the mass transfer rate. A comparison has been made between the current results and the numerical results of previous studies and observed a very close good agreement.
文摘Small-time asymptotics of the trace of the heat semigroup θ(t)=Σ<sub>v=1</sub><sup>x</sup> exp(-tμ<sub>v</sub>). where {μ<sub>v</sub>} are the eigenvalues of the uegative Laplacian -Δ= -Σ<sub>β=1</sub><sup>2</sup>(/x<sup>β</sup>)<sup>2</sup> in the (x<sup>1</sup>, x<sup>2</sup>)-plane. is studied for a general bounded domain Ω with a smooth boundary Ω. where a finite number of Dirichlet. Neumann and Robin boundary conditions, on the piecewise smooth parts Γ<sub>i</sub>(i=1, ..., n) of )Ω such that)Ω=∪<sub>i=1</sub><sup>n</sup>Γ<sub> </sub>are considered. Some geometrical properties associated with Ω are determined
基金the National Nature Science Foundation of China (Grants No.50306019,No.10571142,No.10471110 and No.10471109)
文摘The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.
文摘This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on an arbitrarily given subdomain or subboundary.
基金support from Vietnam National Foundation for Science and Technology Development(NAFOSTED)would like to thank the referees for the helpful suggestions.
文摘The solution of boundary value problems(BVP)for fourth order differential equations by their reduction to BVP for second order equations,with the aim to use the available efficient algorithms for the latter ones,attracts attention from many researchers.In this paper,using the technique developed by the authors in recent works we construct iterative method for a problem with complicated mixed boundary conditions for biharmonic equation which is originated from nanofluidic physics.The convergence rate of the method is proved and some numerical experiments are performed for testing its dependence on a parameter appearing in boundary conditions and on the position of the point where a transmission of boundary conditions occurs.
文摘This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10702077and 10602001)the Beijing Natural Science Foundation(Grant No.1083012)the Alexander von Humboldt Foundation in Germany
文摘For plate bending and stretching problems in piezoelectric materials,the reciprocal theorem and the general solution of piezoelasticity are applied in a novel way to obtain the appropriate mixed boundary conditions accurate to all order.A decay analysis technique is used to establish necessary conditions that the prescribed data on the edge of the plate must satisfy in order that it should generate a decaying state within the plate.For the case of axisymmetric bending and stretching of a circular plate,these decaying state conditions are obtained explicitly for the first time when the mixed conditions are imposed on the plate edge.They are then used for the correct formulation of boundary conditions for the interior solution.
基金Supported by the National Natural Science Foundationof China(No.19772 0 2 2 )
文摘The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives of the unknown to two. The result is an equivalent mixed variational problem which was solved using bilinear finite elements. The primary advantage is that special finite elements are not needed on the adjacent layer of the artificial boundary for the higher-order derivatives. Error estimates are obtained for some local artificial boundary conditions with prescibed orders. A numerical example demonstrates the effectiveness of this method.