AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan...AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X...The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.展开更多
Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis tempera...Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.展开更多
The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of differ...The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of different Mn-oxides on the electrical conductivity of Cr2O3 was also studied under the same conditions. From the conductivity measurements it is established that additions of TiO2 change the defect structure of Cr2O3 and the effect of TiO2 on the electrical conductivity is controlled by TiO2 concentration as well as temperature and O2 partial pressure of the surrounding atmosphere. The conductivity of Cr2O3 increased in air and decreased in the At/H2 atmosphere by CuO additions. The effect of CuO was discussed with possible changes in the defect concentration in Cr2O3. Mixing of Cr2O3 with different Mn-oxides at the same Mn to metal atom fraction decreased the conductivity in air and in Ar/H2 atmospheres. No clear correlation between the spinel fraction and the changes in conductivity could be found.展开更多
A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rate...A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.展开更多
A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase Ce...A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase CeO2 is observed. When x=0.5, the compound was combined by Pr6O11 and CeO2 mixed oxides. For CexPr1-xO2-δ (x=0.5, 0.9)samples 465 cm-1 Raman peak is attributed to the Raman active F2g mode of CeO2. The broad peak at about 570 cm-1 can be linked to lattice defects resulting in oxygen vacancies. The crystallite size of the samples increased as increasing the calcined temperature. But the increased value of Ce0.9Pr0.1O2-δ and Ce0.5Pr0.5O2-δ is smaller than single CeO2 and Pr6O11 obviously. It reveals that the insertion of Pr atom into the ceria lattice could enhance the sintering resistance and thermal stability of the mixed oxides. Calcination temperatures had great effect on the peak intensity for CeO2 but less effect on Ce0.8Pr0.2O2-δ in Raman spectra, and it may be caused by the colors transformation of the mixed oxides. The result of O2-TPD experiment indicates that the formation of solid solution has elevation the stabilization and thermal stability of the mixed oxides.展开更多
Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crysta...Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crystals maintain spherulitic morphology, irrespective of the value of x, concentration of upper and lower reactants, gel pH, gel age and gel temperature. Formation Of Liesegang rings in this system is a temperature dependent phenomenon. It is shown that with the increase of the value of x the system passes from Liesegangring phenomenon to singlezone phenomenon. Operative mechanism of crystallization in the higher (35~40℃) and lower temperature ranges (25~30℃) is explained. Seeded growth experiments indicate the possibility of increasing the size of the spherulites in the gel medium展开更多
Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are depende...Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.展开更多
Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be ...Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.展开更多
A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that...A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.展开更多
To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating l...To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).展开更多
The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and proper...The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.展开更多
Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morpholo...Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morphologies and controlled crystallization were deposited from mixtures of TiCl4 and O2 on quartz substrate by one step process. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology and crystallization of the deposited TiO2 films. It was found that the discharge power played a key role in the morphology and crystallization of the deposited TiO2 film whether the flow of TiCl4was large or small. When the flow of TiCl4 was large, the deposited TiO2 film was amorphous particles at low discharge power and was multi-crystalline at high discharge power. When the flow of TiCl4 was small, the deposited TiO2 film became more compact and the crystallization was enhanced as the discharge power increased. The dependence of the discharge current and the applied voltage with the discharge power indicated that it was a glow discharge. The gas temperature which increases with the discharge power is one of the main causes that affect the morphology and crystallization of the deposited film.展开更多
Aluminium powders were introduced to Al2O3-SiC-C dry ramming mixes in order to improve sintering properties and oxidation resistance according to their service conditions and installation methods. Properties such as b...Aluminium powders were introduced to Al2O3-SiC-C dry ramming mixes in order to improve sintering properties and oxidation resistance according to their service conditions and installation methods. Properties such as bulk density, porosity, modulus of rupture, crushing strength and hot modulus of rupture as a function of aluminium addition were investigated in the present work. The microstructure and thermodynamics for the heat treated specimens were also analyzed. The results show that as aluminium addition increasing, the bulk density of the specimen treated at 220℃ tends to decrease and the apparent porosity increases, the strength of the specimens treated at 1100℃ and 1450℃ increases markedly, the bulk density tends to increase, apparent porosity and linear shrinkage decrease. The HMOR at 1400℃ is enhanced from 1.0 MPa to 3.5 MPa with 3% aluminium. Aluminium is served as sintering agent and anti-oxidant and it will react with CO and CO2 forming Al2O3 , which is helpful to enhance the strength, densify the structure and improve the overall properties.展开更多
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co...Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.展开更多
基金supported by National Natural Science Foundation of China(Nos.51802356,51872334,and 51572299)Innovation-Driven Project of Central South University(No.2018CX004)
文摘AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
基金financially supported by (i) Suranaree University of Technology,(ii) Thailand Science Research and Innovation,and (iii) National Science,Research and Innovation Fund(project codes 90464 and 160363)。
文摘The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
基金Project Supported by Open Fund of Key Laboratory of Catalysis Materials and Science of Hubei Province (CHCL0501)
文摘Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.
文摘The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of different Mn-oxides on the electrical conductivity of Cr2O3 was also studied under the same conditions. From the conductivity measurements it is established that additions of TiO2 change the defect structure of Cr2O3 and the effect of TiO2 on the electrical conductivity is controlled by TiO2 concentration as well as temperature and O2 partial pressure of the surrounding atmosphere. The conductivity of Cr2O3 increased in air and decreased in the At/H2 atmosphere by CuO additions. The effect of CuO was discussed with possible changes in the defect concentration in Cr2O3. Mixing of Cr2O3 with different Mn-oxides at the same Mn to metal atom fraction decreased the conductivity in air and in Ar/H2 atmospheres. No clear correlation between the spinel fraction and the changes in conductivity could be found.
基金Project(51474238)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.
文摘A series of CexPr1-xO2-δ (x=0, 0.5, 0.9, 1.0) mixed oxide calcined at different temperatures were synthesized by sol-gel method and characterized by Raman, XRD and O2-TPD techniques. When x=0.9, only a cubic phase CeO2 is observed. When x=0.5, the compound was combined by Pr6O11 and CeO2 mixed oxides. For CexPr1-xO2-δ (x=0.5, 0.9)samples 465 cm-1 Raman peak is attributed to the Raman active F2g mode of CeO2. The broad peak at about 570 cm-1 can be linked to lattice defects resulting in oxygen vacancies. The crystallite size of the samples increased as increasing the calcined temperature. But the increased value of Ce0.9Pr0.1O2-δ and Ce0.5Pr0.5O2-δ is smaller than single CeO2 and Pr6O11 obviously. It reveals that the insertion of Pr atom into the ceria lattice could enhance the sintering resistance and thermal stability of the mixed oxides. Calcination temperatures had great effect on the peak intensity for CeO2 but less effect on Ce0.8Pr0.2O2-δ in Raman spectra, and it may be caused by the colors transformation of the mixed oxides. The result of O2-TPD experiment indicates that the formation of solid solution has elevation the stabilization and thermal stability of the mixed oxides.
文摘Experiments performed on the grwth of mixed crystals of rare earth tartrates (Y1-xSmx)2 (C4H4O6)3.zH2O (0≤x≤1) from silica gels at 35~40℃ and 25~30℃ employing single-diffusion technique. are discussed. The crystals maintain spherulitic morphology, irrespective of the value of x, concentration of upper and lower reactants, gel pH, gel age and gel temperature. Formation Of Liesegang rings in this system is a temperature dependent phenomenon. It is shown that with the increase of the value of x the system passes from Liesegangring phenomenon to singlezone phenomenon. Operative mechanism of crystallization in the higher (35~40℃) and lower temperature ranges (25~30℃) is explained. Seeded growth experiments indicate the possibility of increasing the size of the spherulites in the gel medium
基金Project supported by National Natural Science Foundation of China
文摘Here some steady-state experiments on oxidation of CO on Pd were performed on a molecular beam apparatus. It is found that the characteristics of the rate of CO_2 formation r versus substrate temperature T are dependent on the ratio P=P_(CO)/P_(O2) in the mixed beam. These characteristics are related to the complicated interactions of co-adsorbed CO and O particles on Pd surface.
基金Project(2008AA030503)supported by the National High Technology Research and Development Program of ChinaProject(51474238)supported by the National Natural Science Foundation of China
文摘Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.
基金Projects(51474238,51334002)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.
基金Project supported by the Ministry of Education,Science Technology(MEST)Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation
文摘To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).
文摘The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.
基金National Natural Science Foundations of China (No.10835004,No.10775031)Science and Technology Commission of Shanghai Municipality,China (No.10XD1400100)
文摘Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morphologies and controlled crystallization were deposited from mixtures of TiCl4 and O2 on quartz substrate by one step process. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology and crystallization of the deposited TiO2 films. It was found that the discharge power played a key role in the morphology and crystallization of the deposited TiO2 film whether the flow of TiCl4was large or small. When the flow of TiCl4 was large, the deposited TiO2 film was amorphous particles at low discharge power and was multi-crystalline at high discharge power. When the flow of TiCl4 was small, the deposited TiO2 film became more compact and the crystallization was enhanced as the discharge power increased. The dependence of the discharge current and the applied voltage with the discharge power indicated that it was a glow discharge. The gas temperature which increases with the discharge power is one of the main causes that affect the morphology and crystallization of the deposited film.
文摘Aluminium powders were introduced to Al2O3-SiC-C dry ramming mixes in order to improve sintering properties and oxidation resistance according to their service conditions and installation methods. Properties such as bulk density, porosity, modulus of rupture, crushing strength and hot modulus of rupture as a function of aluminium addition were investigated in the present work. The microstructure and thermodynamics for the heat treated specimens were also analyzed. The results show that as aluminium addition increasing, the bulk density of the specimen treated at 220℃ tends to decrease and the apparent porosity increases, the strength of the specimens treated at 1100℃ and 1450℃ increases markedly, the bulk density tends to increase, apparent porosity and linear shrinkage decrease. The HMOR at 1400℃ is enhanced from 1.0 MPa to 3.5 MPa with 3% aluminium. Aluminium is served as sintering agent and anti-oxidant and it will react with CO and CO2 forming Al2O3 , which is helpful to enhance the strength, densify the structure and improve the overall properties.
文摘Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.