Kinetic experiments were performed to study the effects of Pd2+ ion on the oxidation of 5,6-dibro-mo-2,3-dicyanohydroquinone catalyzed by Rhus vernicifera laccase under condition of pH 4.5 and 30 × 0. 1℃ . The r...Kinetic experiments were performed to study the effects of Pd2+ ion on the oxidation of 5,6-dibro-mo-2,3-dicyanohydroquinone catalyzed by Rhus vernicifera laccase under condition of pH 4.5 and 30 × 0. 1℃ . The results showed that the mixed activation could be observed when Pd2+ ion was at low concentrations. The competitive and non-competitive activation constants were 9 × 10 and 2 × 10-6 mol/L, respectively. With the increase of Pd2+ ion concentration, the activation was gradually converted into mixed inhibition, and the competitive and non-competitive inhibition constants were 6 × 10-6 and 32 × 10-6 mol/L, respectively.展开更多
The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have...The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides展开更多
To improve the performance of real-time recombinase polymerase amplification(RPA),a microfluidic system with active mixing is developed to optimize the reaction dynamics.Instead of adopting a single typical reaction c...To improve the performance of real-time recombinase polymerase amplification(RPA),a microfluidic system with active mixing is developed to optimize the reaction dynamics.Instead of adopting a single typical reaction chamber,a specific reactor including a relatively large chamber in center with two adjacent zig-zag channels at two sides is integrated into the microfluidic chip.Active mixing is achieved by driving the viscous reagent between the chamber and the channel back and forth periodically with an outside compact peristaltic pump.To avoid reagent evapora-tion,one end of the reactor is sealed with paraffin oil.A hand-held companion device is developed to facilitate real-time RPA amplification within 20 min.The whole area of the reactor is heated with a resistance heater to provide uniform reaction temperature.To achieve real-time monitoring,a compact fluorescence detection module is integrated into the hand-held device.A smartphone with custom application software is adopted to control the hand-held device and display the real-time fluorescence curves.The performances of two cases with and without active on-chip mixing are compared between each other by detecting African swine fever viruses.It has been demonstrated that,with active on-chip mixing,the amplification efficiency and detection sensitivity can be signifi-cantly improved.展开更多
An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsi...An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsion asphalt to convert the normal sand to carbonated sand by using chemical treatment with sulfuric acid. The production process involves mixing of the sand with asphalt and an acid, then subjecting the mix to a heating process. Different mixing ratios, heating temperatures and times (activation times) were tried to obtain the optimum conditions at which the highest removal efficiency is obtained. Three types of acids were tried acetic acid, phosphoric acid and sulfuric acid. It was found that the sulfuric acid requires the lowest activation time, hence selected for the production. The removal efficiency of the produced media was significantly affected by the temperature, mixing ratio and activation heating time. The results show that, the optimum conditions for the production process are 350 , (1:2:3) (Asphalt/acid/sand) and 52 min for temperature, mixing ratio and activation heating time respectively. The final product was tested and found effective as an adsorbent media for phenol and cadmium. The removal efficiencies of these two pollutants in a batch adsorber were found 82.42% and 86.67%, respectively. The X-R diffraction and FTIR spectra tests had proved this media as an adsorbent.展开更多
Aerobic granules were formed in a conven- tional, continuous flow, completely mixed activated sludge system (CMAS). The reactor was inoculated with seed sludge containing few filaments and fed with synthetic municip...Aerobic granules were formed in a conven- tional, continuous flow, completely mixed activated sludge system (CMAS). The reactor was inoculated with seed sludge containing few filaments and fed with synthetic municipal wastewater. The settling time of the sludge and the average dissolved oxygen (DO) of the reactor were 2 h and 4.2 mg. L 1, respectively. The reactor was agitated by a stirrer, with a speed of 250r·min^-1, to ensure good mixing . The granular sludge had good settleability, and the sludge volume index (SVI) was between 50 and 90 mL ·g ^-1. The laser particle analyzer showed the diameter of the granules to be between 0.18 and 1.25 mm. A scanning electron microscope (SEM) investigation revealed the predominance of sphere-like and rod-like bacteria, and only few filaments grew in the granules. The microbial community structure of the granules was also analyzed by polymerase chain reaction-denaturing gradient gel electro- phoresis (PCR-DGGE). Sequencing analysis indicated the dominant species were α, β, and γ-Proteobacteria, Bacteroidetes, and Firmicutes. The data from the study suggested that aerobic granules could form, if provided with sufficient number of filaments and high shear force. It was also observed that a high height-to-diameter ratio of the reactor and short settling time were not essential for the formation of aerobic granular sludge.展开更多
In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity aga...In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria(Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria(Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy(SEM) and transmission electron microscopy(TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis(XRD) and Fourier transform infrared(FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.展开更多
A simplified simulation method based on the FDTD technique that can handle active devices is proposed. This method well suits the electrical crosstalk analysis of multi-channel integrated, opto-electronic mixed module...A simplified simulation method based on the FDTD technique that can handle active devices is proposed. This method well suits the electrical crosstalk analysis of multi-channel integrated, opto-electronic mixed modules. We apply this method to an 8-channel integrated super-compact high-sensitivity optical module. The results show good agreement between simulations and measurements.展开更多
基金Natural Science Foundation of Guangxi (No.9743018)
文摘Kinetic experiments were performed to study the effects of Pd2+ ion on the oxidation of 5,6-dibro-mo-2,3-dicyanohydroquinone catalyzed by Rhus vernicifera laccase under condition of pH 4.5 and 30 × 0. 1℃ . The results showed that the mixed activation could be observed when Pd2+ ion was at low concentrations. The competitive and non-competitive activation constants were 9 × 10 and 2 × 10-6 mol/L, respectively. With the increase of Pd2+ ion concentration, the activation was gradually converted into mixed inhibition, and the competitive and non-competitive inhibition constants were 6 × 10-6 and 32 × 10-6 mol/L, respectively.
文摘The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides
基金supported by the National Natural Science Foundation of China(Nos.81871505,61971026)the Fundamental Research Fund for the Central Universities(No.XK1802-4)+1 种基金the National Science and Technology Major Project(No.2018ZX10732101-001-009)the Research Fund to the Top Scientific and Technological Innovation Team from Beijing University of Chemical Technology(No.buctylkjcx06).
文摘To improve the performance of real-time recombinase polymerase amplification(RPA),a microfluidic system with active mixing is developed to optimize the reaction dynamics.Instead of adopting a single typical reaction chamber,a specific reactor including a relatively large chamber in center with two adjacent zig-zag channels at two sides is integrated into the microfluidic chip.Active mixing is achieved by driving the viscous reagent between the chamber and the channel back and forth periodically with an outside compact peristaltic pump.To avoid reagent evapora-tion,one end of the reactor is sealed with paraffin oil.A hand-held companion device is developed to facilitate real-time RPA amplification within 20 min.The whole area of the reactor is heated with a resistance heater to provide uniform reaction temperature.To achieve real-time monitoring,a compact fluorescence detection module is integrated into the hand-held device.A smartphone with custom application software is adopted to control the hand-held device and display the real-time fluorescence curves.The performances of two cases with and without active on-chip mixing are compared between each other by detecting African swine fever viruses.It has been demonstrated that,with active on-chip mixing,the amplification efficiency and detection sensitivity can be signifi-cantly improved.
文摘An attempt was made to improve the adsorption capability of the normal sand to be used as adsorbent for phenol and cadmium This has been done by producing a coated sand media. The coating process was done using emulsion asphalt to convert the normal sand to carbonated sand by using chemical treatment with sulfuric acid. The production process involves mixing of the sand with asphalt and an acid, then subjecting the mix to a heating process. Different mixing ratios, heating temperatures and times (activation times) were tried to obtain the optimum conditions at which the highest removal efficiency is obtained. Three types of acids were tried acetic acid, phosphoric acid and sulfuric acid. It was found that the sulfuric acid requires the lowest activation time, hence selected for the production. The removal efficiency of the produced media was significantly affected by the temperature, mixing ratio and activation heating time. The results show that, the optimum conditions for the production process are 350 , (1:2:3) (Asphalt/acid/sand) and 52 min for temperature, mixing ratio and activation heating time respectively. The final product was tested and found effective as an adsorbent media for phenol and cadmium. The removal efficiencies of these two pollutants in a batch adsorber were found 82.42% and 86.67%, respectively. The X-R diffraction and FTIR spectra tests had proved this media as an adsorbent.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 50878180).
文摘Aerobic granules were formed in a conven- tional, continuous flow, completely mixed activated sludge system (CMAS). The reactor was inoculated with seed sludge containing few filaments and fed with synthetic municipal wastewater. The settling time of the sludge and the average dissolved oxygen (DO) of the reactor were 2 h and 4.2 mg. L 1, respectively. The reactor was agitated by a stirrer, with a speed of 250r·min^-1, to ensure good mixing . The granular sludge had good settleability, and the sludge volume index (SVI) was between 50 and 90 mL ·g ^-1. The laser particle analyzer showed the diameter of the granules to be between 0.18 and 1.25 mm. A scanning electron microscope (SEM) investigation revealed the predominance of sphere-like and rod-like bacteria, and only few filaments grew in the granules. The microbial community structure of the granules was also analyzed by polymerase chain reaction-denaturing gradient gel electro- phoresis (PCR-DGGE). Sequencing analysis indicated the dominant species were α, β, and γ-Proteobacteria, Bacteroidetes, and Firmicutes. The data from the study suggested that aerobic granules could form, if provided with sufficient number of filaments and high shear force. It was also observed that a high height-to-diameter ratio of the reactor and short settling time were not essential for the formation of aerobic granular sludge.
文摘In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria(Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria(Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy(SEM) and transmission electron microscopy(TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis(XRD) and Fourier transform infrared(FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.
文摘A simplified simulation method based on the FDTD technique that can handle active devices is proposed. This method well suits the electrical crosstalk analysis of multi-channel integrated, opto-electronic mixed modules. We apply this method to an 8-channel integrated super-compact high-sensitivity optical module. The results show good agreement between simulations and measurements.