Acidless and fluoless flotation is a new method for sepa-rating feldspar from quartz at the natural pH value of tap water in the ab-sence of any acid and fluoride and other inorganic reagents. The paper discusses the ...Acidless and fluoless flotation is a new method for sepa-rating feldspar from quartz at the natural pH value of tap water in the ab-sence of any acid and fluoride and other inorganic reagents. The paper discusses the mechanism of mixed collectors in separation of feldspar and quartz by means of mono-mineral flotation experiment, determination of surface-tension, analisis of fluorescence, infrared spectrum, Auger elec-tron sepectrum , and quantum chemistry calculation.展开更多
This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investiga...This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR)spectroscopy combined with the two-dimensional correlation spectroscopy(2D-COS)and X-ray photoelectron spectroscopy(XPS).It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1.Zeta potential experiments suggested that,in the presence of mixed collector system,the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA,however,the complex adsorbed on the surface of titanaugite unstably.According to in situ ATR-FTIR combined with 2D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as:the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand,then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding.DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring,while the modes on the titanaugite surface is true opposite.Finally,recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed.展开更多
Nowadays,with the depletion of high-grade scheelite resources,the efficient exploitation of complex,low grade with complicated geological structure scheelite ore have to take into account.This work introduces a feasib...Nowadays,with the depletion of high-grade scheelite resources,the efficient exploitation of complex,low grade with complicated geological structure scheelite ore have to take into account.This work introduces a feasible mineral processing method for the beneficiation of low grade and complex scheelite using the X-ray transmission(XRT) pre-concentration technology and mixed collectors.The results of XRT sorting shown that 94.85% WO_(3) can be recovered with the discarding rate reached40.62%.The closed-circuit flotation of actual ore using mixed collector obtained scheelite concentrate of 61.09% WO_(3) grade with WO_(3) recovery of 89.49%.The combined flowsheet of XRT sorting and mixed collector brought about RMB 4.5 million yuan profit per year for the mine company.展开更多
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s...This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained.展开更多
文摘Acidless and fluoless flotation is a new method for sepa-rating feldspar from quartz at the natural pH value of tap water in the ab-sence of any acid and fluoride and other inorganic reagents. The paper discusses the mechanism of mixed collectors in separation of feldspar and quartz by means of mono-mineral flotation experiment, determination of surface-tension, analisis of fluorescence, infrared spectrum, Auger elec-tron sepectrum , and quantum chemistry calculation.
基金This work was supported by the National Natural Science Foundation of China(Nos.51904249 and 51922091)the Sichuan Science and Technology Program(No.SYZ202074)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001).
文摘This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA).The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR)spectroscopy combined with the two-dimensional correlation spectroscopy(2D-COS)and X-ray photoelectron spectroscopy(XPS).It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1.Zeta potential experiments suggested that,in the presence of mixed collector system,the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA,however,the complex adsorbed on the surface of titanaugite unstably.According to in situ ATR-FTIR combined with 2D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as:the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand,then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding.DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring,while the modes on the titanaugite surface is true opposite.Finally,recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed.
文摘Nowadays,with the depletion of high-grade scheelite resources,the efficient exploitation of complex,low grade with complicated geological structure scheelite ore have to take into account.This work introduces a feasible mineral processing method for the beneficiation of low grade and complex scheelite using the X-ray transmission(XRT) pre-concentration technology and mixed collectors.The results of XRT sorting shown that 94.85% WO_(3) can be recovered with the discarding rate reached40.62%.The closed-circuit flotation of actual ore using mixed collector obtained scheelite concentrate of 61.09% WO_(3) grade with WO_(3) recovery of 89.49%.The combined flowsheet of XRT sorting and mixed collector brought about RMB 4.5 million yuan profit per year for the mine company.
基金the Key Projects of National Key R&D Program of China(No.2022YFC2904702).
文摘This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained.