Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptima...Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptimal solutions and solvable superoptimal solutions.展开更多
The mixed l1/H2 optimization problem for MIMO (multiple input-multiple output) discrete-time systems is considered. This problem is formulated as minimizing the l1-norm of a closed-loop transfer matrix while maintaini...The mixed l1/H2 optimization problem for MIMO (multiple input-multiple output) discrete-time systems is considered. This problem is formulated as minimizing the l1-norm of a closed-loop transfer matrix while maintaining the H2-norm of another closed-loop transfer matrix at prescribed level. The continuity property of the optimal value in respect to changes in the H2-norm constraint is studied. The existence of the optimal solutions of mixed l1/H2 problem is proved. Because the solution of the mixed l1/H2 problem is based on the scaled-Q method, it avoids the zero interpolation difficulties. The convergent upper and lower bounds can be obtained by solving a sequence of finite dimensional nonlinear programming for which many efficient numerical optimization algorithms exist.展开更多
The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinit...The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems.展开更多
This paper focuses on the 2-median location improvement problem on tree networks and the problem is to modify the weights of edges at the minimum cost such that the overall sum of the weighted distance of the vertices...This paper focuses on the 2-median location improvement problem on tree networks and the problem is to modify the weights of edges at the minimum cost such that the overall sum of the weighted distance of the vertices to the respective closest one of two prescribed vertices in the modified network is upper bounded by a given value.l1 norm and l∞norm are used to measure the total modification cost. These two problems have a strong practical application background and important theoretical research value. It is shown that such problems can be transformed into a series of sum-type and bottleneck-type continuous knapsack problems respectively.Based on the property of the optimal solution two O n2 algorithms for solving the two problems are proposed where n is the number of vertices on the tree.展开更多
In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for t...In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for the original problem and design an extragradient thresholding algorithm (ETA) to solve the regularized model. Furthermore, we prove that any cluster point of the sequence generated by ETA is a solution of MCP. Finally, numerical experiments show that the ETA algorithm can effectively solve the l1 regularized projection minimization model and obtain the sparse solution of the mixed complementarity problem.展开更多
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvo...Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim...In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.展开更多
In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry ...In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry property(Block-RIP),a theoretical analysis is presen ted to guarantee the validity of proposed method.Our theore tical resul ts not only show a less error upper bound,but also promote the former recovery condition of truncated l1-2 method for sparse signal recovery.Besides,the algorithm has been compared with some state-of-the-art algorithms and numerical experiments have shown excellent performances on recovering the block sparse signals.展开更多
文摘Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptimal solutions and solvable superoptimal solutions.
基金This project was supported by the National Nature Science Foundation of China (60374009)Nature Science Foundation of Guangdong Province of China (990795).
文摘The mixed l1/H2 optimization problem for MIMO (multiple input-multiple output) discrete-time systems is considered. This problem is formulated as minimizing the l1-norm of a closed-loop transfer matrix while maintaining the H2-norm of another closed-loop transfer matrix at prescribed level. The continuity property of the optimal value in respect to changes in the H2-norm constraint is studied. The existence of the optimal solutions of mixed l1/H2 problem is proved. Because the solution of the mixed l1/H2 problem is based on the scaled-Q method, it avoids the zero interpolation difficulties. The convergent upper and lower bounds can be obtained by solving a sequence of finite dimensional nonlinear programming for which many efficient numerical optimization algorithms exist.
基金This work is supported by the National Natural Science Foundation of China (No.60374002 and No.60421002) the 973 program of China (No.2002CB312200) and the program for New Century Excellent Talents in University (No.NCET-04-0547).
文摘The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems.
基金The National Natural Science Foundation of China(No.10801031)
文摘This paper focuses on the 2-median location improvement problem on tree networks and the problem is to modify the weights of edges at the minimum cost such that the overall sum of the weighted distance of the vertices to the respective closest one of two prescribed vertices in the modified network is upper bounded by a given value.l1 norm and l∞norm are used to measure the total modification cost. These two problems have a strong practical application background and important theoretical research value. It is shown that such problems can be transformed into a series of sum-type and bottleneck-type continuous knapsack problems respectively.Based on the property of the optimal solution two O n2 algorithms for solving the two problems are proposed where n is the number of vertices on the tree.
文摘In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for the original problem and design an extragradient thresholding algorithm (ETA) to solve the regularized model. Furthermore, we prove that any cluster point of the sequence generated by ETA is a solution of MCP. Finally, numerical experiments show that the ETA algorithm can effectively solve the l1 regularized projection minimization model and obtain the sparse solution of the mixed complementarity problem.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11171299 and 91130009)Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090091)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.
基金Partially Supported by National Natural Science Foundation of China(No.61173102)
文摘Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金supported by the National Natural Science Foundation of China under grants U21A20455,61972265,11871348 and 11701388by the Natural Science Foundation of Guangdong Province of China under grant 2020B1515310008by the Educational Commission of Guangdong Province of China under grant 2019KZDZX1007.
文摘In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.
基金The authors would like to thank reviewers for valuable comments.This work was supported by Natural Science Foundation of China(Grant Nos.61673015,61273020)Fundamental Research Funds for the Central Universities(Grant Nos.XDJK2015A007,XDJK 2018C076,SWU1809002).
文摘In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry property(Block-RIP),a theoretical analysis is presen ted to guarantee the validity of proposed method.Our theore tical resul ts not only show a less error upper bound,but also promote the former recovery condition of truncated l1-2 method for sparse signal recovery.Besides,the algorithm has been compared with some state-of-the-art algorithms and numerical experiments have shown excellent performances on recovering the block sparse signals.