期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
A SISO mixed H2/l1 optimal control problem and its solution
1
作者 吴俊 胡协和 褚健 《Journal of Zhejiang University Science》 CSCD 2004年第1期68-74,共7页
Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptima... Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptimal solutions and solvable superoptimal solutions. 展开更多
关键词 mixed H 2/l 1 problem EXISTENCE UNIQUENESS Approximation
下载PDF
Approximation methods of mixed l_1/H_2 optimization problems for MIMO discrete-time systems
2
作者 李昇平 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期319-326,共8页
The mixed l1/H2 optimization problem for MIMO (multiple input-multiple output) discrete-time systems is considered. This problem is formulated as minimizing the l1-norm of a closed-loop transfer matrix while maintaini... The mixed l1/H2 optimization problem for MIMO (multiple input-multiple output) discrete-time systems is considered. This problem is formulated as minimizing the l1-norm of a closed-loop transfer matrix while maintaining the H2-norm of another closed-loop transfer matrix at prescribed level. The continuity property of the optimal value in respect to changes in the H2-norm constraint is studied. The existence of the optimal solutions of mixed l1/H2 problem is proved. Because the solution of the mixed l1/H2 problem is based on the scaled-Q method, it avoids the zero interpolation difficulties. The convergent upper and lower bounds can be obtained by solving a sequence of finite dimensional nonlinear programming for which many efficient numerical optimization algorithms exist. 展开更多
关键词 MIMO system discrete-time systems mixed l1/H2 optimization.
下载PDF
On the Dual of a Mixed H_2/l_1 Optimisation Problem
3
作者 Jun Wu Jian Chu Sheng Chen 《International Journal of Automation and computing》 EI 2006年第1期91-98,共8页
The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinit... The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems. 展开更多
关键词 Optimal control mixed H2/l1 control duality theory.
下载PDF
2-median location improvement problems under weighted l_1 norm and l_∞ norm on trees 被引量:1
4
作者 杨利平 关秀翠 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期346-351,共6页
This paper focuses on the 2-median location improvement problem on tree networks and the problem is to modify the weights of edges at the minimum cost such that the overall sum of the weighted distance of the vertices... This paper focuses on the 2-median location improvement problem on tree networks and the problem is to modify the weights of edges at the minimum cost such that the overall sum of the weighted distance of the vertices to the respective closest one of two prescribed vertices in the modified network is upper bounded by a given value.l1 norm and l∞norm are used to measure the total modification cost. These two problems have a strong practical application background and important theoretical research value. It is shown that such problems can be transformed into a series of sum-type and bottleneck-type continuous knapsack problems respectively.Based on the property of the optimal solution two O n2 algorithms for solving the two problems are proposed where n is the number of vertices on the tree. 展开更多
关键词 2-median network improvement problem TREE knapsack problem l1 norm l norm
下载PDF
基于L_(2,1)范数稀疏特征选择和超法向量的深度图像序列行为识别 被引量:4
5
作者 宋相法 张延锋 郑逢斌 《计算机科学》 CSCD 北大核心 2017年第2期306-308,323,共4页
结合L_(2,1)范数稀疏特征选择和超法向量提出了一种新的深度图像序列行为识别方法。首先从深度图像序列中提取超法向量特征;然后利用L_(2,1)范数稀疏特征选择方法从超法向量特征中选择出最具判别性的稀疏特征子集作为特征表示;最后利用... 结合L_(2,1)范数稀疏特征选择和超法向量提出了一种新的深度图像序列行为识别方法。首先从深度图像序列中提取超法向量特征;然后利用L_(2,1)范数稀疏特征选择方法从超法向量特征中选择出最具判别性的稀疏特征子集作为特征表示;最后利用线性分类器Liblinear进行分类。在MSR Action3D数据库上的实验结果表明,所提方法使用2%的超法向量特征获得的识别率为94.55%,并且具有比其他方法更高的识别精度。 展开更多
关键词 行为识别 深度图像序列 超法向量 稀疏特征选择 l2 1范数
下载PDF
H_2/l_1混合优化问题的凸二次规划解法
6
作者 孔亚广 吴俊 孙优贤 《控制与决策》 EI CSCD 北大核心 2001年第2期250-253,共4页
采用上逼近算法求解 H2 / l1 混合优化问题。首先将其转化为有限维的凸二次规划问题 ,并利用L emke互补转轴算法求解 ;然后逐次进行逼近。
关键词 H2/l1混合优化问题 凸二次规划 H∞优化控制 鲁棒性
下载PDF
Sparse Solutions of Mixed Complementarity Problems 被引量:1
7
作者 Peng Zhang Zhensheng Yu 《Journal of Applied Mathematics and Physics》 2020年第1期10-22,共13页
In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for t... In this paper, we consider an extragradient thresholding algorithm for finding the sparse solution of mixed complementarity problems (MCPs). We establish a relaxation l1 regularized projection minimization model for the original problem and design an extragradient thresholding algorithm (ETA) to solve the regularized model. Furthermore, we prove that any cluster point of the sequence generated by ETA is a solution of MCP. Finally, numerical experiments show that the ETA algorithm can effectively solve the l1 regularized projection minimization model and obtain the sparse solution of the mixed complementarity problem. 展开更多
关键词 mixed Complementarity Problem SPARSE Solution l1 REGUlARIZED PROJECTION minimization Model Extragradient THRESHOlDING Algorithm
下载PDF
通过混合l_(2)/l_(1)范数最小化实现块稀疏信号恢复
8
作者 李坤 王会敏 《绍兴文理学院学报》 2022年第10期53-59,共7页
块稀疏信号恢复问题在很多领域都有非常重要的应用.将Karmalkar用于处理稀疏信号问题的方法推广至块稀疏信号,研究带噪声的块稀疏信号恢复问题,通过混合l_(2)/l_(1)范数最小化和高斯矩阵的性质,可以得到最小测量误差,精确地恢复块稀疏信号.
关键词 块稀疏信号 噪声 高斯矩阵 混合l_(2)/l_(1)范数最小化
下载PDF
非线性l-1模极小化问题的极大熵差分进化算法 被引量:3
9
作者 李超燕 秦晓明 赖红辉 《计算机工程与应用》 CSCD 北大核心 2011年第8期41-43,92,共4页
针对一类非线性l-1模极小化问题目标函数非光滑的特点给求解带来的困难,利用差分进化算法并结合极大熵函数法给出了解决此类问题的一种有效算法。利用极大熵函数将l-1模极小化问题转化为一个光滑函数的无约束最优化问题,利用差分进化算... 针对一类非线性l-1模极小化问题目标函数非光滑的特点给求解带来的困难,利用差分进化算法并结合极大熵函数法给出了解决此类问题的一种有效算法。利用极大熵函数将l-1模极小化问题转化为一个光滑函数的无约束最优化问题,利用差分进化算法对其进行求解。实验结果表明,该方法是有效的。 展开更多
关键词 差分进化算法 l-1模极小化问题 极大熵方法
下载PDF
非线性l-1模极小化问题的极大熵粒子群算法 被引量:4
10
作者 张建科 《计算机工程与应用》 CSCD 北大核心 2009年第13期62-64,共3页
针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然... 针对非线性l-1模极小化问题,利用粒子群算法并结合极大熵函数法给出了此类问题的一种新混合算法。该算法首先利用极大熵函数将非线性l-1模极小化问题转化为一个光滑函数的无约束最优化问题,将此光滑函数作为粒子群算法的适应值函数;然后应用粒子群算法来优化此问题。数值结果表明,该算法收敛快、数值稳定性好,是求解非线性l-1模极小化问题的一种有效算法。 展开更多
关键词 粒子群算法 进化算法 l-1模极小化问题 极大熵函数
下载PDF
相依样本下条件中位数L_1模核估计的相合性 被引量:2
11
作者 凌能祥 《数理统计与应用概率》 1997年第2期133-138,共6页
本文在样本序列为同分布的混合的情形下,研究了条件中位数L1模核估计的逐点强。
关键词 条件中位数 l1模核估计 Φ-混合 相合性 核估计
下载PDF
平均曲率L^2范数有界的双极小子流形
12
作者 曹顺娟 马宗蔚 《浙江大学学报(理学版)》 CAS CSCD 2014年第5期506-508,共3页
证明了满足一定曲率条件的黎曼流形中平均曲率L2范数有界的双极小子流形必是极小子流形,并讨论了一个更一般的结果和几个推论.
关键词 双极小子流形 极小子流形 平均曲率l^2 范数Bernstein型定理
下载PDF
Block Sparse Recovery via Mixed l_2/l_1 Minimization 被引量:10
13
作者 Jun Hong LIN Song LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1401-1412,共12页
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl... We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307. 展开更多
关键词 Compressed sensing block RIP block sparsity mixed l2/l1 minimization
原文传递
一类含时Poisson-Nernst-Planck方程的虚单元计算
14
作者 刘亚 阳莺 《桂林电子科技大学学报》 2024年第1期1-6,共6页
针对一类含时Poisson-Nernst-Planck(PNP)方程,为避免在解决实际问题时有限元法中的网格适应性问题,构造了L^(2)投影算子与Gummel迭代相结合的虚单元算法。该算法允许以更简单的方式设计和分析新的格式,可以灵活处理各种网格,对于多边... 针对一类含时Poisson-Nernst-Planck(PNP)方程,为避免在解决实际问题时有限元法中的网格适应性问题,构造了L^(2)投影算子与Gummel迭代相结合的虚单元算法。该算法允许以更简单的方式设计和分析新的格式,可以灵活处理各种网格,对于多边形或多面体单元甚至非凸单元组成的网格剖分都可以很好地处理,使得虚单元法可以适应于任意多边形网格,大大降低了网格的生成难度。给出了虚单元算法在三角形网格、四边形网格、非凸网格下的数值算例。数值实验结果表明,在这3种多边形网格上,L^(2)和H^(1)模的收敛阶分别为二阶和一阶,均达到了最优阶。 展开更多
关键词 Poisson-Nernst-Planck方程 虚单元算法 l^(2)投影 Gummel迭代 l^(2)模 H^(1)模
下载PDF
一个修正的l_1模算法
15
作者 李文军 孙秀真 《石油大学学报(自然科学版)》 CSCD 1997年第2期90-94,共5页
对BS算法进行了修正,找出其内部量的递推关系,构造了一个更有效。
关键词 l1模极小解 进基 出基 最优化
下载PDF
Blind Deblurring Based on L_0 Norm from Salient Edges
16
作者 LIU Yu LIU Xiu-ping +1 位作者 WU Xiao-xu ZHAO Guo-hui 《Computer Aided Drafting,Design and Manufacturing》 2013年第2期1-8,共8页
Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvo... Motion deblurring is a basic problem in the field of image processing and analysis. This paper proposes a new method of single image blind deblurring which can be significant to kernel estimation and non-blind deconvolution. Experiments show that the details of the image destroy the structure of the kernel, especially when the blur kernel is large. So we extract the image structure with salient edges by the method based on RTV. In addition, the traditional method for motion blur kernel estimation based on sparse priors is conducive to gain a sparse blur kernel. But these priors do not ensure the continuity of blur kernel and sometimes induce noisy estimated results. Therefore we propose the kernel refinement method based on L0 to overcome the above shortcomings. In terms of non-blind deconvolution we adopt the L1/L2 regularization term. Compared with the traditional method, the method based on L1/L2 norm has better adaptability to image structure, and the constructed energy functional can better describe the sharp image. For this model, an effective algorithm is presented based on alternating minimization algorithm. 展开更多
关键词 image deblurring kernel estimation blind deconvolution l0 norm l 1/l2 norm
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
17
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix l1-norm l2 norm latent factor model recommender system smooth l1-norm
下载PDF
Lagrange插值在一重积分Wiener空间下的平均误差 被引量:3
18
作者 胡增周 《天津师范大学学报(自然科学版)》 CAS 2012年第4期1-5,共5页
在加权L2-范数下,讨论了基于第二类Chebyshev多项式零点的Lagrange插值多项式列在一重积分Wiener空间下的平均误差,得到了相应量的弱渐近阶.
关键词 平均误差 CHEBYSHEV多项式 lAGRANGE插值 l2-范数 一重积分Wiener空间
下载PDF
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
19
作者 Jian Lu Yuting Ye +2 位作者 Yiqiu Dong Xiaoxia Liu Yuru Zou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1171-1191,共21页
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim... In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise. 展开更多
关键词 Image denoising Weighted nuclear norm minimization l 1-data-fidelity term low rank analysis Impulse noise
原文传递
ENHANCED BLOCK-SPARSE SIGNAL RECOVERY PERFORMANCE VIA TRUNCATED l2\l1-2 MINIMIZATION
20
作者 Weichao Kong Jianjun Wang +1 位作者 Wendong Wang Feng Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2020年第3期437-451,共15页
In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry ... In this paper,we investigate truncated l2\l1-2 minimization and its associated alternating direction method of multipliers(ADMM)algorithm for recovering the block sparse signals.Based on the block restricted isometry property(Block-RIP),a theoretical analysis is presen ted to guarantee the validity of proposed method.Our theore tical resul ts not only show a less error upper bound,but also promote the former recovery condition of truncated l1-2 method for sparse signal recovery.Besides,the algorithm has been compared with some state-of-the-art algorithms and numerical experiments have shown excellent performances on recovering the block sparse signals. 展开更多
关键词 Compressed sensing Block-sparse Trunca ted l2\l1-2 minimization met hod ADMM
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部