期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
The Effect of Boreal Summer Intraseasonal Oscillation on Mixed Layer and Upper Ocean Temperature over the South China Sea 被引量:1
1
作者 JIA Wentao SUN Jilin +1 位作者 ZHANG Weimin WANG Huizan 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期285-296,共12页
Intraseasonal oscillation of the mixed layer and upper ocean temperature has been found to occur over the South China Sea(SCS)in the summer monsoon season based on the multiple reanalysis and observational data in thi... Intraseasonal oscillation of the mixed layer and upper ocean temperature has been found to occur over the South China Sea(SCS)in the summer monsoon season based on the multiple reanalysis and observational data in this study.The method of composite analysis and an upper ocean temperature equation assisted the analysis of physical mechanisms.The results show that the mixed layer depth(MLD)in the SCS has a significant oscillation with a 30-60 d period over the SCS region,which is closely related to boreal summer intraseasonal oscillation(BSISO)activities.The MLD can increase(decrease)during the positive(negative)phase of the BSISO and usually lags behind by approximately one-eighth of the lifecycle(5 days)of the BSISO-related convection.The BSISO may cause periodic anomalies at the air-sea boundary,such as wind stress and heat flux,so it can play a dominant role in modulating the variation in MLD.There also are significant intraseasonal seawater temperature anomalies in both the surface and subsurface layers of the SCS.In addition,during the initial phase of the BSISO,the temperature anomaly signals of the thermocline are obviously opposite to the sea surface temperature(SST),especially in the southern SCS.According to the results from the analysis of the temperature equation,the vertical entrainment term caused by BSISO-related wind stress is stronger than the thermal forcing during the initial stage of convection,and it is more significant in the southern SCS. 展开更多
关键词 boreal summer intraseasonal oscillation South China Sea mixed layer depth upper ocean temperature
下载PDF
Influence of the upper mixed layer depth on Langmuir turbulence characteristics 被引量:1
2
作者 Guojing LI Changming DONG +2 位作者 Jiayi PAN Adam T.DEVLIN Dongxiao WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期17-37,共21页
The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influe... The upper mixed layer depth(h)has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth.To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium,the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow(h=5 m)to deep enough(h=40 m)are studied using a non-hydrostatic large eddy simulation model.The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence(h_(LT))within the thermocline.The normalized depthaveraged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/h_(LT)<1 and h/h_(LT)>1,respectively,indicating that turbulence characteristics have the essential change(i.e.,depth-averaged vertical velocity variance(DAVV)DADV for Langmuir turbulence)between h/h_(LT)<1 and h/h_(LT)>1.The rate of change of the normalized depth-averaged low-order statistics for h/h_(LT)<1 is much larger than that for h/h_(LT)>1.The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/h_(LT)<1 and the eff ect of upward reactive force on the downward pressure perturbation becomes weak for h/h_(LT)>1.Hence,the upper mixed layer depth has significant influences on Langmuir turbulence characteristics. 展开更多
关键词 the upper mixed layer depth Langmuir turbulence turbulent characteristics large eddy simulation
下载PDF
Mixed layer warming by the barrier layer in the southeastern Indian Ocean
3
作者 Kaiyue Wang Yisen Zhong Meng Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期32-38,共7页
The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect o... The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect on the upper mixed layer heat content through the entrainment processes at the base of the mixed layer,which has not been well evaluated due to the lack of proper method and dataset.Among various traditional threshold methods,here it is shown that the 5 m fixed depth difference can produce a reliable and accurate estimate of the entrainment heat flux(EHF)in this BL region.The comparison between the daily and monthly EHF warming indicates that the account for high-frequency EHF variability almost doubles the warming effect in the BL period,which can compensate for or even surpass the surface heat loss.This increased warming is a result of stronger relative rate of the mixed layer deepening and larger temperature differences between the mixed layer and its immediate below in the daily-resolving data.The interannual EHF shows a moderately increasing trend and similar variabilities to the Southern Annular Mode(SAM),likely because the mixed layer deepening under the positive SAM trend is accompanied by enhanced turbulent entrainment and thus increases the BL warming. 展开更多
关键词 barrier layer mixed layer entrainment heat flux high-frequency variability southeastern Indian Ocean
下载PDF
Seasonal variability of the mixed layer depth determined using an improved maximum angle method in the Arctic basins
4
作者 Linxu ZHAI Tao LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期852-864,共13页
To investigate the spatiotemporal variations in the mixed layer depth(MLD)in the Arctic basins,a new criterion to determine the MLD,called the improved maximum angle method(IMAM),was developed.A total of 45123 potenti... To investigate the spatiotemporal variations in the mixed layer depth(MLD)in the Arctic basins,a new criterion to determine the MLD,called the improved maximum angle method(IMAM),was developed.A total of 45123 potential density profiles collected using Ice-Tethered Profilers(ITPs)in the Arctic basins during 2005-2021 were used to demonstrate the method’s effectiveness.By comparing the results obtained by the fixed threshold method(FTM),percentage threshold method(PTM),and maximum gradient method(MGM)for profiles in the Canada Basin,Makarov Basin,and Eurasian Basin,we determined that the quality index(1.0 for perfect identification of the MLD)of the IMAM regarding the assessment of the MLD determination method reached 0.94,which is much greater than those of other criteria.Moreover,two types of the density profiles were identified based on the mixed layer development stage.The MLDs of the typical profiles determined using the IMAM were found to have better consistency with the original definition.By utilizing the new mixed layer criterion,the seasonal variations and regional differences in the MLD in the Arctic basins were analyzed.Spatially,the summer and winter MLDs in the Canada Basin were the shallowest(13.55 m in summer,26.76 m in winter)than those in the Makarov(29.51 m in summer,49.08 m in winter)and Eurasian(20.36 m in summer,46.81 m in winter)basins due to the stable stratification in the upper ocean and the subsequent small effects of dynamic and thermodynamic processes(wind-driven stirring and brine rejection)in the Canada Basin.Seasonally,in the three Arctic basins,the average MLD was shallowest(22.77 m)in summer;it deepened through autumn and reached a winter maximum(41.12 m). 展开更多
关键词 mixed layer depth(MLD) improved maximum angle method(IMAM) Arctic basins
下载PDF
On the subtropical Northeast Pacific mixed layer depth and its influence on the subduction 被引量:4
5
作者 XIA Ruibin LIU Chengyan CHENG Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第3期51-62,共12页
The present climate simulations of the mixed layer depth(MLD) and the subduction rate in the subtropical Northeast Pacific are investigated based on nine of the CMIP5 models. Compared with the observation data,spati... The present climate simulations of the mixed layer depth(MLD) and the subduction rate in the subtropical Northeast Pacific are investigated based on nine of the CMIP5 models. Compared with the observation data,spatial patterns of the MLD and the subduction rate are well simulated in these models. The spatial pattern of the MLD is nonuniform, with a local maximum MLD(〉140 m) region centered at(28°N, 135°W) in late winter. The nonuniform MLD pattern causes a strong MLD front on the south of the MLD maximum region, controls the lateral induction rate pattern, and then decides the nonuniform distribution of the subduction rate. Due to the inter-regional difference of the MLD, we divide this area into two regions. The relatively uniform Ekman pumping has little effect on the nonuniform subduction spatial pattern, though it is nearly equal to the lateral induction in values. In the south region, the northward warm Ekman advection(–1.75×10–7 K/s) controls the ocean horizontal temperature advection(–0.85×10–7 K/s), and prevents the deepening of the MLD. In the ensemble mean, the contribution of the ocean advection to the MLD is about –29.0 m/month, offsetting the sea surface net heat flux contribution(33.9 m/month). While in the north region, the southward cold advection deepens the MLD(21.4 m/month) as similar as the heat flux(30.4 m/month). In conclusion, the nonuniform MLD pattern is dominated by the nonuniform ocean horizontal temperature advection. This new finding indicates that the upper ocean current play an important role in the variability of the winter MLD and the subduction rate. 展开更多
关键词 mixed layer depth mixed layer depth front SUBDUCTION horizontal temperature advection NONUNIFORM
下载PDF
Response of the mixed layer depth and subduction rate in the subtropical Northeast Pacific to global warming 被引量:2
6
作者 Ruibin Xia Bingrui Li Chen Cheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第4期1-9,共9页
The response of the mixed layer depth(MLD)and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models.Compared with the present climate in the 9 models,the respon... The response of the mixed layer depth(MLD)and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models.Compared with the present climate in the 9 models,the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform,with the maximum shoaling about 50 m in the ensemble mean result.The inter-model differences of MLD change are non-negligible,which depend on the various dominated mechanisms.On the north of the MLD front,MLD shallows largely and is influenced by Ekman pumping,heat flux,and upper-ocean cold advection changes.On the south of the MLD front,MLD changes a little in the warmer climate,which is mainly due to the upper-ocean warm advection change.As a result,the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%)in the ensemble mean,not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability.The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85%in ensemble mean)due to the significant weakening of the MLD front.This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly,and then plays an important role in the response of the MLD front and the subduction process to global warming. 展开更多
关键词 mixed layer depth mixed layer depth front SUBDUCTION ocean advection NON-UNIFORM
下载PDF
Simulation and future projection of the mixed layer depth and subduction process in the subtropical Southeast Pacific
7
作者 Ruibin Xia Yijun He Tingting Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第12期104-113,共10页
The present climate simulation and future projection of the mixed layer depth(MLD)and subduction process in the subtropical Southeast Pacific are investigated based on the geophysical fluid dynamics laboratory earth s... The present climate simulation and future projection of the mixed layer depth(MLD)and subduction process in the subtropical Southeast Pacific are investigated based on the geophysical fluid dynamics laboratory earth system model(GFDL-ESM2 M).The MLD deepens from May and reaches its maximum(>160 m)near(24°S,104°W)in September in the historical simulation.The MLD spatial pattern in September is non-uniform in the present climate,which shows three characteristics:(1)the deep MLD extends from the Southeast Pacific to the West Pacific and leads to a"deep tongue"until 135°W;(2)the northern boundary of the MLD maximum is smoothly near 18°S,and MLD shallows sharply to the northeast;(3)there is a relatively shallow MLD zone inserted into the MLD maximum eastern boundary near(26°S,80°W)as a weak"shallow tongue".The MLD nonuniform spatial pattern generates three strong MLD fronts respectively in the three key regions,promoting the subduction rate.After global warming,the variability of MLD spatial patterns is remarkably diverse,rather than deepening consistently.In all the key regions,the MLD deepens in the south but shoals in the north,strengthing the MLD front.As a result,the subduction rate enhances in these areas.This MLD antisymmetric variability is mainly influenced by various factors,especially the potential-density horizontal advection non-uniform changes.Notice that the freshwater flux change helps to deepen the MLD uniformly in the whole basin,so it hardly works on the regional MLD variability.The study highlights that there are regional differences in the mechanisms of the MLD change,and the MLD front change caused by MLD non-uniform variability is the crucial factor in the subduction response to global warming. 展开更多
关键词 mixed layer depth mixed layer depth front SUBDUCTION ocean potential-density advection
下载PDF
Simulation of the ocean surface mixed layer under the wave breaking 被引量:10
8
作者 SUNQun SONGJinbao GUANChanglong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第3期9-15,共7页
A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northe... A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking. 展开更多
关键词 breaking waves mixed layer turbulent kinetic energy THERMOCLINE
下载PDF
Simulation and Exploration of the Mechanisms Underlying the Spatiotemporal Distribution of Surface Mixed Layer Depth in a Large Shallow Lake 被引量:8
9
作者 赵巧华 孙绩华 朱广伟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1360-1373,共14页
The aquatic eco-environment is significantly affected by temporal and spatial variation of the mixed layer depth (MLD) in large shallow lakes. In the present study, we simulated the three-dimensional water temperatu... The aquatic eco-environment is significantly affected by temporal and spatial variation of the mixed layer depth (MLD) in large shallow lakes. In the present study, we simulated the three-dimensional water temperature of Taihu Lake with an unstructured grid with a finite-volume coastal ocean model (FVCOM) using wind speed, wind direction, short-wave radiation and other meteorological data measured during 13-18 August 2008. The simulated results were consistent with the measurements. The temporal and spatial distribution of the MLD and the possible relevant mechanisms were analyzed on the basis of the water temperature profile data of Taihu Lake. The results indicated that diurnal stratification might be established through the combined effect of the hydrodynamic conditions induced by wind and the heat exchange between air and water. Compared with the net heat flux, the changes of the MLD were delayed approximately two hours. Furthermore, there were significant spatial differences of the MLD in Taihu Lake due to the combined impact of thermal and hydrodynamic forces. Briefly, diurnal stratification formed relatively easily in Gonghu Bay, Zhushan Bay, Xukou Bay and East Taihu Bay, and the surface mixed layer was thin. The center of the lake region had the deepest surface mixed layer due to the strong mixing process. In addition, Meiliang Bay showed a medium depth of the surface mixed layer. Our analysis indicated that the spatial difference in the hydrodynamic action was probably the major cause for the spatial variation of the MLD in Taihu Lake. 展开更多
关键词 mixed layer depth temporal and spatial distribution Taihu Lake thermal stratification
下载PDF
Interannual variability of mixed layer depth and heat storage of upper layer in the tropical Pacific Ocean 被引量:5
10
作者 LINYihua YOUXiaobao GUANYuping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第1期31-39,共9页
By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth i... By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth in the tropical Pacific Ocean are investigated. The abnormal signal of the warm event comes from the central and west Pacific Ocean, whereas it is regarded that the abnormal signal of the warm event comes from the east Pacific Ocean in the popular viewpoint. From the viewpoint on the evolution of the interannual variability of the mixed layer depth and the heat storage of the whole upper layer, the difference between the two types of El Nino is so small that it can be neglected. During these two El Nino/La Nina events(1972/1973 and 1997/1998), other than the case of the heat storage or for the mixed layer depth, the abnormal signal propagates from the central and west Pacific Ocean to the east usually by the path along the equator whereas the abnormal signal propagates from the east to the west by the path northern to the equator. For the interannual variability, the evolution of the mixed layer depth corresponds to that of the heat storage in the upper layer very well. This is quite different from the evolution of seasonality. 展开更多
关键词 interannual variability heat storage mixed layer depth tropical Pacific Ocean
下载PDF
A study of the mixed layer of the South China Sea based on the multiple linear regression 被引量:5
11
作者 DUAN Rui YANG Kunde +1 位作者 MA Yuanliang HU Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期19-31,共13页
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ... Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid. 展开更多
关键词 mixed layer multiple linear regression South China Sea vertical mixing model
下载PDF
Role of Horizontal Density Advection in Seasonal Deepening of the Mixed Layer in the Subtropical Southeast Pacific 被引量:3
12
作者 Qinyu LIU Yiqun LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期442-451,共10页
The mechanisms behind the seasonal deepening of the mixed layer (ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML (more than 175 m... The mechanisms behind the seasonal deepening of the mixed layer (ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML (more than 175 m) was found in the region of (22°-30°S, 105°-90°W), reaching its maximum depth (-200 m) near (27°-28°S, 100°W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent (STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22~S to 35~S, while the meridional density advection by the subtropical gyre strengthens the strat- ification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific. 展开更多
关键词 mixed layer seasonal deepening Southeast Pacific heat flux density advection
下载PDF
Parameterization for the Depth of the Entrainment Zone above the Convectively Mixed Layer 被引量:3
13
作者 孙鉴泞 蒋维楣 +1 位作者 陈子赟 袁仁民 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期114-121,共8页
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the i... It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method using Ri*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri*. 展开更多
关键词 convectively mixed layer the depth of the entrainment zone capping inversion layer parameterization scheme parcel theory
下载PDF
Contrasting dynamic characteristics of shear turbulence and Langmuir circulation in the surface mixed layer 被引量:3
14
作者 LI Guojing WANG Dongxiao +4 位作者 CHEN Ju YAO Jinglong ZENG Lili SHU Yeqiang SUI Dandan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期1-11,共11页
Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind for... Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC. 展开更多
关键词 surface mixed layer Langmuir circulation shear turbulence large eddy simulation
下载PDF
The spatiotemporal variation of the wind-induced near-inertial energy flux in the mixed layer of the South China Sea 被引量:2
15
作者 LI Juan LIU Junliang +1 位作者 CAI Shuqun PAN Jiayi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期66-72,共7页
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a sla... On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated. 展开更多
关键词 near-inertial energy flux mixed layer spatiotemporal variation slab model South China Sea
下载PDF
Mixed layer in the Sea of Japan:numerical simulation andlong-term data analysis 被引量:1
16
作者 TRUSENKOVA Olga KHRAPCHENKOV Fyodor ISHIDA Hajime 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期76-85,共10页
Seasonal variation and topography of the mixed layer in the Sea of Japan are studied by comparison of results from long-term observation data analysis and from numerical simulation with the MHI oceanic model (Shapiro.... Seasonal variation and topography of the mixed layer in the Sea of Japan are studied by comparison of results from long-term observation data analysis and from numerical simulation with the MHI oceanic model (Shapiro. 1998. Marine Hydrophysical Journal, 6: 26-40). The data are retrieved from Oceanographic A tlas of the Bering Sea, Okhotsk Sea, and Japan/East Sea (Rostov, Rostov, Dmitrieva, et al. 2003. Pacific Oceanography, 1(1):70-72). The simulated and long-term patterns are compared. An impact of surface buoyancy flux, wind, and convergence/divergence of surface currents upon the mixed layer in the Sea of Japan is analyzed. 展开更多
关键词 numerical modeling circuktion of the Sea of Japan mixed layer depth seasonal variation spatial patterns
下载PDF
Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal 被引量:1
17
作者 Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of BengalXU Kang LIU Boqi +2 位作者 LIU Yu WANG Weiqiang HE Zhuoqi 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1616-1631,共16页
We investigated the effects of monsoon onset vortex(MOV)on the mixed layer heat budget in the Bay of Bengal(BOB)in spring 2003 using the reanalysis datasets.The results suggest that the solar radiation flux penetratin... We investigated the effects of monsoon onset vortex(MOV)on the mixed layer heat budget in the Bay of Bengal(BOB)in spring 2003 using the reanalysis datasets.The results suggest that the solar radiation flux penetrating the mixed layer and the existence of barrier layer are both able to modulate the effects of MOV on the evolution of sea surface temperature(SST)in the BOB.Prior to the formation of BOB MOV,the local SST raised quickly due to mass of solar radiation reaching the sea surface under the clear-sky condition.Meanwhile,since the mixed layer was shallow before the onset of the Asian summer monsoon(ASM),some solar radiation flux could penetrate to directly heat the deeper water,which partly offset the warming effect of shortwave radiation.On the other hand,the in-situ SST started to cool due to the upwelling of cold water when the MOV generated over the BOB,along with the rapidly increased surface wind speed and its resultant deeper mixed layer.As the MOV developed and moved northward,the SST tended to decrease remarkably because of the strong upward surface latent heat flux over the BOB ascribed to the wind-evaporation mechanism.However,the MOV-related precipitation brought more fresh water into the upper ocean to produce a thicker barrier layer,whose thermal barrier effect damped the cooling effect of entrainment upwelling on the decrease tendency of the BOB SST.In other words,the thermal barrier effect could slow down the decreasing trend of the BOB SST even after the onset of ASM,which facilitated the further enhancement of the MOV. 展开更多
关键词 monsoon onset vortex(MOV) Bay of Bengal air-sea interaction mixed layer depth barrier layer thickness heat budget analysis
下载PDF
Influence of Coriolis Parameter Variation on Langmuir Turbulence in the Ocean Upper Mixed Layer with Large Eddy Simulation 被引量:1
18
作者 Dongxiao WANG Guojing LI +1 位作者 Lian SHEN Yeqiang SHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1487-1500,共14页
Langmuir turbulence is a complex turbulent process in the ocean upper mixed layer.The Coriolis parameter has an important effect on Langmuir turbulence through the Coriolis-Stokes force and Ekman effect,however,this e... Langmuir turbulence is a complex turbulent process in the ocean upper mixed layer.The Coriolis parameter has an important effect on Langmuir turbulence through the Coriolis-Stokes force and Ekman effect,however,this effect on Langmuir turbulence has not been systematically investigated.Here,the impact of the Coriolis parameter on Langmuir turbulence with a change of latitude(LAT)from 20°N to 80°N is studied using a non-hydrostatic large eddy simulation model under an ideal condition.The results show that the ratio of the upper mixed layer depth to Ekman depth scale(RME)RME=0.266(LAT=50°N)is a key value(latitude)for the modulation effect of the Coriolis parameter on the mean and turbulent statistics of Langmuir turbulence.It is found that the rate of change of the sea surface temperature,upper mixed layer depth,entrainment flux,crosswind velocity,downwind vertical momentum flux,and turbulent kinetic energy budget terms associated with Langmuir turbulence are more evident at RME≤0.266(LAT≤50°N)than at RME≥0.266(LAT≥50°N).However,the rate of change of the depth-averaged crosswind vertical momentum flux does not have a clear variation between RME≤0.266 and RME≥0.266.The complex changes of both Langmuir turbulence characteristics and influence of Langmuir turbulence on the upper mixed layer with latitude presented here may provide more information for further improving Langmuir turbulence parameterization. 展开更多
关键词 Langmuir turbulence Coriolis parameter the upper mixed layer large eddy simulation
下载PDF
Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming
19
作者 Ruosi ZHANG Shang-Ping XIE +1 位作者 Lixiao XU Qinyu LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期452-461,共10页
The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the o... The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate. 展开更多
关键词 mixed layer depth global warming temperature advection spring bloom
下载PDF
A numerical study of Stokes drift and thermal effects on the oceanic mixed layer
20
作者 Xuewei Li Dongliang Zhao Zhongshui Zou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期35-45,共11页
This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mel... This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mellor-Yamada turbulence closure scheme.The upper ocean thermal structures through Princeton ocean model are examined by experiments in the cases of idealized forcing and real observational situation.The results suggest that Stokes drift can generally enhance turbulence kinetic energy and deepen MLD either in summer or in winter.This effect will improve the simulation results in summer,but it will lead to much deeper MLD in winter compared to observational data.It is found that MLD can be correctly simulated by combining Stokes drift and the thermal effects of the cool skin layer and diurnal warm layer on the upper mixing layer.In the case of high shortwave radiation and weak wind speed,which usually occurs in summer,the heat absorbed from sun is blocked in the warm layer and prevented from being transferred downwards.As a result,the thermal effects in summer nearly has no influence on dynamic effect of Stokes drift that leads to deepening MLD.However,when the stratification is weak in winter,the thermal effects will counteract the dynamic effect of Stokes drift through enhancing the strength of stratification and suppress mixing impact.Therefore,the dynamic and thermal effects should be considered simultaneously in order to correctly simulate upper ocean thermal structures in both summer and winter. 展开更多
关键词 mixed layer cool skin layer diurnal warm layer Stokes drift
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部