For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul...Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.展开更多
Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of ...Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metaleorganic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,BrunauereEmmetteTeller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer-3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes ...Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.展开更多
In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation pro...In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.展开更多
To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyr...To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n...Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.展开更多
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes...Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.展开更多
As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The ...As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation.展开更多
The efficient separation of butadiene(1,3-C_(4)H_(6))from C_(4)hydrocarbons is a critical step in petrochemical processes.However,the traditional cryogenic distillation suffers from energy-intensity and serious enviro...The efficient separation of butadiene(1,3-C_(4)H_(6))from C_(4)hydrocarbons is a critical step in petrochemical processes.However,the traditional cryogenic distillation suffers from energy-intensity and serious environmental stress,necessitating the development of alternative technologies for efficient 1,3-C_(4)H_(6)separation.Herein,a 1,3-C_(4)H_(6)recognition mixed matrix membrane is reported via incorporating metal copper encapsulated a metal-organic framework(CuBTC@Cu)into elastic poly(dimethylsiloxane)(PDMS).The resulting CuBTC@Cu/PDMS membrane can efficient separate 1,3-C_(4)H_(6)from various C_(4)hydrocarbons including 1,3-C_(4)H_(6)/n-C_(4)H_(8),1,3-C_(4)H_(6)/iso-C_(4)H_(8),1,3-C_(4)H_(6)/n-C_(4)H_(10)and 1,3-C_(4)H_(6)/iso-C_(4)H_(10),yielding superior selectivity of 5.11,6.35,4.78,and 10.30,respectively,with 1,3-C_(4)H_(6)permeability of 53240 Barrer.Notably,the appropriateπ-complexation interaction between butadiene molecules and CuBTC@Cu as well as suitable transmission channel size enable the membrane only permeable to 1,3-C_(4)H_(6)and block the permeation of other C_(4)hydrocarbons,showing a unique 1,3-C_(4)H_(6)recognition behavior in membrane separation.The concept of affinity-relying separation combining molecular sieving would open a new direction for designing gas membranes for efficient light hydrocarbon separations.展开更多
Although carbon nanomaterials have been widely used as effective nanofillers for fabrication of mixed matrix membranes(MMMs)with outstanding performances,the reproducibility of the fabricated MMMs is still hindered by...Although carbon nanomaterials have been widely used as effective nanofillers for fabrication of mixed matrix membranes(MMMs)with outstanding performances,the reproducibility of the fabricated MMMs is still hindered by the non-homogenous dispersion of these carbon nanofillers in membrane substrate.Herein,we report an effective way to improve the compatibility of carbon-based nanomaterials with membrane matrixes.By chemically conjugating the oxidized CNTs(o-CNTs)and GO using hexanediamine as cross-linker,a novel carbon nanohybrid material(G-CNTs)was synthesized,which inherited both the advanced properties of multi-walled carbon nanotubes(CNTs)and graphene oxide(G0).The G-CNTs incorporated polyvinylidene fluoride(PVDF)MMMs(GCNTs/PVDF)were fabricated via a non-solvent induced phase separation(NIPS)method.The filtration and antifouling performances of G-CNTs/PVDF were evaluated using distillate water and a1g/L bovine serum albumin(BSA)aqueous solution under 0.10 MPa.Compared to the MMMs prepared with o-CNTs,GO,the physical mixture of o-CNTs and GO and pure PVDF membrane,the G-CNTs/PVDF membrane exhibited the highest water flux up to 220 L/m%and a flux recovery ratio as high as 90%,as well as the best BSA rejection rate.The excellent performances should be attributed to the increased membrane pore size,porosity and hydrophilicity of the resulted membrane.The successful synthesis of the novel nanohybrid G-CNTs provides a new type of nanofillers for MMMs fabrication.展开更多
Polymeric membrane-based gas separation has found wide applications in industry,such as carbon capture,hydrogen recovery,natural gas sweetening,as well as oxygen enrichment.Commercial gas separation membranes are requ...Polymeric membrane-based gas separation has found wide applications in industry,such as carbon capture,hydrogen recovery,natural gas sweetening,as well as oxygen enrichment.Commercial gas separation membranes are required to have high gas permeability and selectivity,while being cost-effective to process.Mixed matrix membranes(MMMs)have a composite structure that consists of polymers and fillers,therefore featuring the advantages of both materials.Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties,such as mechanical strength and thermal stability.This perspective describes potential use of MMMs for carbon capture applications,explores their limitations in fabrication and methods to overcome them,and addresses their performance under industry gas conditions.展开更多
The two-dimensional(2D)nanosheet zinc cobaltate(ZnCo_(2)O_(4))was added into polyether block amide(Pebax)matrix to prepare mixing matrix membrane(MMM)for separating carbon dioxide(CO_(2))/methane(CH4)gas mixture.The 2...The two-dimensional(2D)nanosheet zinc cobaltate(ZnCo_(2)O_(4))was added into polyether block amide(Pebax)matrix to prepare mixing matrix membrane(MMM)for separating carbon dioxide(CO_(2))/methane(CH4)gas mixture.The 2D porous ZnCo_(2)O_(4)nanosheets were composed of chemically interconnected metal oxide nanoparticles.The ZnCo_(2)O_(4)nanoparticles in the nanosheets constructed large-quantity pores of 11.78 nm and provided abundant transfer channels for gas molecule.Moreover,the synergistic effect of bimetallic Zn^(2+)and Co^(2+)would promote the generation of oxygen vacancies(Oδ-),which could provide more CO_(2)(Cδ+)adsorption sites,thereby increased the selectivity of the membrane.The large aspect ratio of the ultra-thin ZnCo_(2)O_(4)nanosheets showed better dispersion in the membrane.The pure gas separation performance data showed the CO_(2)permeability and CO_(2)/CH4 selectivity of Pebax/ZnCo_(2)O_(4)membrane were 139.10 Barrer and 15.38,respectively,when the filling amount was 0.5 wt%.Compared with pure Pebax membrane,the separation performance(permeability and selectivity)were increased with 165.67%and 75.57%,respectively.展开更多
In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity aga...In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria(Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria(Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy(SEM) and transmission electron microscopy(TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis(XRD) and Fourier transform infrared(FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.展开更多
Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination...Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination polymer filler(MIL-53-NH2) was successfully prepared, which sharply promotes the CO2/N2 selectivity from 44(neat polymeric membrane) to 75. Remarkably, the positive effect of amide group and nanochannel of MIL-53-NH2 filler was illustrated by decreased selectivity of the MMM with formic acid modified MIL-53-NH2 filler(MIL-53-NHCOH).展开更多
One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by micr...One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.展开更多
Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mi...Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.展开更多
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form d...We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.展开更多
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
文摘Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.
基金financial support from the National Natural Science Foundation of China(52174229 and 52174230)the Natural Science Foundation of Liaoning Province(2022-KF-13-05)+1 种基金Fushun Revitalization Talents Program(FSYC202107010)the program funded by Liaoning Province Education Administration(LJKZ0411).
文摘Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metaleorganic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,BrunauereEmmetteTeller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer-3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金Supported by the National Natural Science Foundation of China(21436009)the Program of Introducing Talents of Discipline to Universities(B06006)
文摘Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.
基金supported by the National Science and Technology Planning Project(No.2011BAC08B00)the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.
基金supported by Key Research and Development of Tangshan (19140204F)。
文摘To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
基金financial support of Research Institute of Petroleum Industry
文摘Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.
基金Supported by the National Natural Science Foundation of China(21776217,21506160)Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06400)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars(48)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.
基金supported by the National Natural Science Foundation of China(Nos.21875285,22171288,22005340)the Key Research and Development Projects of Shandong Province(No.2019JZZY010331)+2 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2020MB017,ZR2022MB009)the Fundamental Research Funds for the Central Universities(No.23CX07004A)the Outstanding Youth Science Fund Projects of Shandong Province(Nos.2022HWYQ-070,ZR2022YQ15).
文摘As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation.
基金the National Key R&D Program of China(grant number:2021YFB3802200)the Natural Science Foundation of China(grant number:22038010).
文摘The efficient separation of butadiene(1,3-C_(4)H_(6))from C_(4)hydrocarbons is a critical step in petrochemical processes.However,the traditional cryogenic distillation suffers from energy-intensity and serious environmental stress,necessitating the development of alternative technologies for efficient 1,3-C_(4)H_(6)separation.Herein,a 1,3-C_(4)H_(6)recognition mixed matrix membrane is reported via incorporating metal copper encapsulated a metal-organic framework(CuBTC@Cu)into elastic poly(dimethylsiloxane)(PDMS).The resulting CuBTC@Cu/PDMS membrane can efficient separate 1,3-C_(4)H_(6)from various C_(4)hydrocarbons including 1,3-C_(4)H_(6)/n-C_(4)H_(8),1,3-C_(4)H_(6)/iso-C_(4)H_(8),1,3-C_(4)H_(6)/n-C_(4)H_(10)and 1,3-C_(4)H_(6)/iso-C_(4)H_(10),yielding superior selectivity of 5.11,6.35,4.78,and 10.30,respectively,with 1,3-C_(4)H_(6)permeability of 53240 Barrer.Notably,the appropriateπ-complexation interaction between butadiene molecules and CuBTC@Cu as well as suitable transmission channel size enable the membrane only permeable to 1,3-C_(4)H_(6)and block the permeation of other C_(4)hydrocarbons,showing a unique 1,3-C_(4)H_(6)recognition behavior in membrane separation.The concept of affinity-relying separation combining molecular sieving would open a new direction for designing gas membranes for efficient light hydrocarbon separations.
基金The authors acknowledge the financial support by the Key Program of Natural Science Foundation of Tianjin City(Grant No.18JCZDJC39700)the Science and Technology Project of Binhai District of Tianjin(Grant No.BHXQKJXM-PT-ZJSHJ-2017004)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFC0404002)the 111 Program,Ministry of Education of China(Grant No.T2017002).
文摘Although carbon nanomaterials have been widely used as effective nanofillers for fabrication of mixed matrix membranes(MMMs)with outstanding performances,the reproducibility of the fabricated MMMs is still hindered by the non-homogenous dispersion of these carbon nanofillers in membrane substrate.Herein,we report an effective way to improve the compatibility of carbon-based nanomaterials with membrane matrixes.By chemically conjugating the oxidized CNTs(o-CNTs)and GO using hexanediamine as cross-linker,a novel carbon nanohybrid material(G-CNTs)was synthesized,which inherited both the advanced properties of multi-walled carbon nanotubes(CNTs)and graphene oxide(G0).The G-CNTs incorporated polyvinylidene fluoride(PVDF)MMMs(GCNTs/PVDF)were fabricated via a non-solvent induced phase separation(NIPS)method.The filtration and antifouling performances of G-CNTs/PVDF were evaluated using distillate water and a1g/L bovine serum albumin(BSA)aqueous solution under 0.10 MPa.Compared to the MMMs prepared with o-CNTs,GO,the physical mixture of o-CNTs and GO and pure PVDF membrane,the G-CNTs/PVDF membrane exhibited the highest water flux up to 220 L/m%and a flux recovery ratio as high as 90%,as well as the best BSA rejection rate.The excellent performances should be attributed to the increased membrane pore size,porosity and hydrophilicity of the resulted membrane.The successful synthesis of the novel nanohybrid G-CNTs provides a new type of nanofillers for MMMs fabrication.
文摘Polymeric membrane-based gas separation has found wide applications in industry,such as carbon capture,hydrogen recovery,natural gas sweetening,as well as oxygen enrichment.Commercial gas separation membranes are required to have high gas permeability and selectivity,while being cost-effective to process.Mixed matrix membranes(MMMs)have a composite structure that consists of polymers and fillers,therefore featuring the advantages of both materials.Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties,such as mechanical strength and thermal stability.This perspective describes potential use of MMMs for carbon capture applications,explores their limitations in fabrication and methods to overcome them,and addresses their performance under industry gas conditions.
基金the National High Technology Research and Development Program of China(2012AA03A611)the National Natural Science Foundation of China,grant No.21868031.
文摘The two-dimensional(2D)nanosheet zinc cobaltate(ZnCo_(2)O_(4))was added into polyether block amide(Pebax)matrix to prepare mixing matrix membrane(MMM)for separating carbon dioxide(CO_(2))/methane(CH4)gas mixture.The 2D porous ZnCo_(2)O_(4)nanosheets were composed of chemically interconnected metal oxide nanoparticles.The ZnCo_(2)O_(4)nanoparticles in the nanosheets constructed large-quantity pores of 11.78 nm and provided abundant transfer channels for gas molecule.Moreover,the synergistic effect of bimetallic Zn^(2+)and Co^(2+)would promote the generation of oxygen vacancies(Oδ-),which could provide more CO_(2)(Cδ+)adsorption sites,thereby increased the selectivity of the membrane.The large aspect ratio of the ultra-thin ZnCo_(2)O_(4)nanosheets showed better dispersion in the membrane.The pure gas separation performance data showed the CO_(2)permeability and CO_(2)/CH4 selectivity of Pebax/ZnCo_(2)O_(4)membrane were 139.10 Barrer and 15.38,respectively,when the filling amount was 0.5 wt%.Compared with pure Pebax membrane,the separation performance(permeability and selectivity)were increased with 165.67%and 75.57%,respectively.
文摘In this work, polysulfone/polyimide(PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite(MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria(Salmonella typhi, Klebsella pneumonia) and two gram positive bacteria(Staphylococcus aureus, Bacillus subtilis). The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal, mechanical and structural properties was evaluated. The morphological evolution was investigated through scanning electron microscopy(SEM) and transmission electron microscopy(TEM) analysis, which revealed good compatibility between organic polymer matrix and inorganic filler. Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis(TGA) and differential scanning calorimetry(DSC). This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%. Structural analysis was successfully done using X-ray diffraction analysis(XRD) and Fourier transform infrared(FTIR) spectroscopy. Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent. However, addition of filler content enhanced the porosity of fabricated membranes. The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane. Therefore, the combination effect of PSf, PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.
基金financial support of the National Natural Science Foundation of China (No. 21671102)Natural Science Foundation of Jiangsu Province (No. BK20161538)+2 种基金Innovative Research Team Program by the Ministry of Education of China (No. IRT17R54)Six Talent Peaks Project in Jiangsu Province (No. JY-030)State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201406)
文摘Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination polymer filler(MIL-53-NH2) was successfully prepared, which sharply promotes the CO2/N2 selectivity from 44(neat polymeric membrane) to 75. Remarkably, the positive effect of amide group and nanochannel of MIL-53-NH2 filler was illustrated by decreased selectivity of the MMM with formic acid modified MIL-53-NH2 filler(MIL-53-NHCOH).
基金financially supported by the National Natural Science Foundation of China(Nos.21706189,21978217,21676201)Science and Technology Plans of Tianjin(18JCQNJC06800,18PTSYJC00190,17PTSYJC00050)+2 种基金Tianjin Natural Science Foundation(No.18JCYBJC89400)Tianjin Municipal Education Commission Scientific Research Project(2017KJ074)University Students?innovation and entrepreneurship training program(202010058050,202110058127)。
文摘One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.
文摘Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.
基金*The project partly supported by the Special Scientific Research Foundation for Ph. D. Program of Universities of China, National Natural Science Foundation of China
文摘We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.