Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated fro...A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.展开更多
Tree mortality plays a fundamental role in the dynamics of forest ecosystems,yet it is one of the most difficult phenomena to accurately predict.Various modeling strategies have been developed to improve individual tr...Tree mortality plays a fundamental role in the dynamics of forest ecosystems,yet it is one of the most difficult phenomena to accurately predict.Various modeling strategies have been developed to improve individual tree mortality predictions.One less explored strategy is the use of a multistage modeling approach.Potential improvements from this approach have remained largely unknown.In this study,we developed a novel multistage approach and compared its performance in individual tree mortality predictions with a more conventional approach using an identical individual tree mortality model formulation.Extensive permanent plot data(n=9442)covering the Acadian Region of North America and over multiple decades(1965–2014)were used in this study.Our results indicated that the model behavior with the multistage approach better depicted the observed mortality and showed a notable improvement over the conventional approach.The difference between the observed and predicted numbers of dead trees using the multistage approach was much smaller when compared with the conventional approach.In addition,tree survival probabilities predicted by the multistage approach generally were not significantly different from the observations,whereas the conventional approach consistently underestimated mortality across species and overestimated tree survival probabilities over the large range of DBH in the data.The new multistage approach also predictions of zero mortality in individual plots,a result not possible in conventional models.Finally,the new approach was more tolerant of modeling errors because it based estimates on ranked tree mortality rather than error-prone predicted values.Overall,this new multistage approach deserves to be considered and tested in future studies.展开更多
The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress stat...The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.展开更多
Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute s...Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.展开更多
Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
Purpose: To formulate and demonstrate methods for regression modeling of probabilities and dispersions for individual-patient longitudinal outcomes taking on discrete numeric values. Methods: Three alternatives for mo...Purpose: To formulate and demonstrate methods for regression modeling of probabilities and dispersions for individual-patient longitudinal outcomes taking on discrete numeric values. Methods: Three alternatives for modeling of outcome probabilities are considered. Multinomial probabilities are based on different intercepts and slopes for probabilities of different outcome values. Ordinal probabilities are based on different intercepts and the same slope for probabilities of different outcome values. Censored Poisson probabilities are based on the same intercept and slope for probabilities of different outcome values. Parameters are estimated with extended linear mixed modeling maximizing a likelihood-like function based on the multivariate normal density that accounts for within-patient correlation. Formulas are provided for gradient vectors and Hessian matrices for estimating model parameters. The likelihood-like function is also used to compute cross-validation scores for alternative models and to control an adaptive modeling process for identifying possibly nonlinear functional relationships in predictors for probabilities and dispersions. Example analyses are provided of daily pain ratings for a cancer patient over a period of 97 days. Results: The censored Poisson approach is preferable for modeling these data, and presumably other data sets of this kind, because it generates a competitive model with fewer parameters in less time than the other two approaches. The generated probabilities for this model are distinctly nonlinear in time while the dispersions are distinctly nonconstant over time, demonstrating the need for adaptive modeling of such data. The analyses also address the dependence of these daily pain ratings on time and the daily numbers of pain flares. Probabilities and dispersions change differently over time for different numbers of pain flares. Conclusions: Adaptive modeling of daily pain ratings for individual cancer patients is an effective way to identify nonlinear relationships in time as well as in other predictors such as the number of pain flares.展开更多
The purpose of this article is to investigate approaches for modeling individual patient count/rate data over time accounting for temporal correlation and non</span><span style="font-family:Verdana;"...The purpose of this article is to investigate approaches for modeling individual patient count/rate data over time accounting for temporal correlation and non</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">constant dispersions while requiring reasonable amounts of time to search over alternative models for those data. This research addresses formulations for two approaches for extending generalized estimating equations (GEE) modeling. These approaches use a likelihood-like function based on the multivariate normal density. The first approach augments standard GEE equations to include equations for estimation of dispersion parameters. The second approach is based on estimating equations determined by partial derivatives of the likelihood-like function with respect to all model parameters and so extends linear mixed modeling. Three correlation structures are considered including independent, exchangeable, and spatial autoregressive of order 1 correlations. The likelihood-like function is used to formulate a likelihood-like cross-validation (LCV) score for use in evaluating models. Example analyses are presented using these two modeling approaches applied to three data sets of counts/rates over time for individual cancer patients including pain flares per day, as needed pain medications taken per day, and around the clock pain medications taken per day per dose. Means and dispersions are modeled as possibly nonlinear functions of time using adaptive regression modeling methods to search through alternative models compared using LCV scores. The results of these analyses demonstrate that extended linear mixed modeling is preferable for modeling individual patient count/rate data over time</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> because in example analyses</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> it either generates better LCV scores or more parsimonious models and requires substantially less time.展开更多
Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at t...Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.展开更多
WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted ma...WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from http://agbu. une.edu.au/-kmeyer/wombat.html展开更多
The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains...The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.展开更多
The mechanisms and efficiencies of the removal and remediation of polycyclic aromatic hydrocarbons (PAHs) in soils by different planting patterns with rape (Brassica campestris) and alfalfa (Medicago sativa) wer...The mechanisms and efficiencies of the removal and remediation of polycyclic aromatic hydrocarbons (PAHs) in soils by different planting patterns with rape (Brassica campestris) and alfalfa (Medicago sativa) were studied by pot experiments in a greenhouse. Results showed that the remediation efficiencies under mixed cropping of alfalfa and rape significantly exceeded those under single cropping when the initial concentrations of phenanthrene and pyrene were at 20.05-322.06 mg kg^-1 and 20.24-321.42 mg kg^-1, respectively. After 70 days plantation of crops, the contents of extractable PAHs in soils under mixed cropping were much lower than those under single cropping. About 65.17-83.52% of phenanthrene and 60.09%- 75.34% ofpyrene was removed from the soils under mixed cropping, respectively, which were averagely 43.26 and 40.38% for phenanthrene, and 11.03 and 16.29% for pyren higher than those under single cropping. Alfalfa or rape did absorb and accumulate PAHs from the soils apparently; the PAHs concentrations in plants monotonically increased with the increase of initial PAHs concentrations in soil; the accumulations of PAHs in plants showed following sequence as roots 〉 above parts, phenanthrene 〉 pyrene and single cropping 〉 mixed cropping at same contamination level. Despite the presence of vegetation significantly enhanced the remediation of PAHs in soils, contributions of abiotic loss, plant uptake, accumulation and microbial degradation was much lower than those of plant-microbial interactions in the process of phytoremediation. Thus plant-microbial interactions are the main mechanisms for the remediation enhancement of soil PAHs pollution under mixed cropping models. Results suggested a feasibility of the establishment of multi-species phytoremediation for the improvement of remediation efficiencies of PAHs, which may decrease accumulations of PAHs in crops and thus reduce their risks.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variabl...Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.展开更多
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t...The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.展开更多
A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure ...A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.展开更多
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
基金Supported by the National Natural Science Foundation of China (No.60404018) and the State Key Development Program for Basic Research of China (No.2002CB312200).
文摘A novel control strategy for a continuous stirred tank reactor(CSTR)system,which has the typical characteristic of strongly pronounced nonlinearity,multiple operating points,and a wide operating range,is initiated from the point of hybrid systems.The proposed scheme makes full use of the modeling power of mixed logical dy- namical(MLD)systems to describe the highly nonlinear dynamics and multiple operating points in a unified framework as a hybrid system,and takes advantage of the good control quality of model predictive control(MPC) to design a controller.Thus,this approach avoids oscillation during switching between sub-systems,helps to relieve shaking in transition,and augments the stability robustness of the whole system,and finally achieves optimal(i.e. fast and smooth)transition between operating points.The simulation results demonstrate that the presented ap- proach has a satisfactory performance.
基金provided by National Science Foundation Center for Advanced Forestry Systems(CAFSAward#1915078)RII Track-2FEC(Award#1920908)。
文摘Tree mortality plays a fundamental role in the dynamics of forest ecosystems,yet it is one of the most difficult phenomena to accurately predict.Various modeling strategies have been developed to improve individual tree mortality predictions.One less explored strategy is the use of a multistage modeling approach.Potential improvements from this approach have remained largely unknown.In this study,we developed a novel multistage approach and compared its performance in individual tree mortality predictions with a more conventional approach using an identical individual tree mortality model formulation.Extensive permanent plot data(n=9442)covering the Acadian Region of North America and over multiple decades(1965–2014)were used in this study.Our results indicated that the model behavior with the multistage approach better depicted the observed mortality and showed a notable improvement over the conventional approach.The difference between the observed and predicted numbers of dead trees using the multistage approach was much smaller when compared with the conventional approach.In addition,tree survival probabilities predicted by the multistage approach generally were not significantly different from the observations,whereas the conventional approach consistently underestimated mortality across species and overestimated tree survival probabilities over the large range of DBH in the data.The new multistage approach also predictions of zero mortality in individual plots,a result not possible in conventional models.Finally,the new approach was more tolerant of modeling errors because it based estimates on ranked tree mortality rather than error-prone predicted values.Overall,this new multistage approach deserves to be considered and tested in future studies.
基金Supported by the National Natural Science Foundation of China(No.52101343)the Aeronautical Science Foundation(No.201834S9002).
文摘The failure rate of crankpin bearing bush of diesel engine under complex working conditions such as high temperature,dynamic load and variable speed is high.After serious wear,it is easy to deteriorate the stress state of connecting rod body and connecting rod bolt,resulting in serious accidents such as connecting rod fracture and body damage.Based on the mixed lubrication characteristics of connecting rod big endbearing shell of diesel engine under high explosion pressure impact load,an improved mixed lubrication mechanism model is established,which considers the influence of viscoelastic micro deformation of bearing bush material,integrates the full film lubrication model and dry friction model,couples dynamic equation of connecting rod.Then the actual lubrication state of big end bearing shell is simulated numerically.Further,the correctness of the theoretical research results is verified by fault simulation experiments.The results show that the high-frequency impact signal with fixed angle domain characteristics will be generated after the serious wear of bearing bush and the deterioration of lubrication state.The fault feature capture and alarm can be realized through the condition monitoring system,which can be applied to the fault monitoring of connecting rod bearing bush of diesel engine in the future.
文摘Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
文摘Purpose: To formulate and demonstrate methods for regression modeling of probabilities and dispersions for individual-patient longitudinal outcomes taking on discrete numeric values. Methods: Three alternatives for modeling of outcome probabilities are considered. Multinomial probabilities are based on different intercepts and slopes for probabilities of different outcome values. Ordinal probabilities are based on different intercepts and the same slope for probabilities of different outcome values. Censored Poisson probabilities are based on the same intercept and slope for probabilities of different outcome values. Parameters are estimated with extended linear mixed modeling maximizing a likelihood-like function based on the multivariate normal density that accounts for within-patient correlation. Formulas are provided for gradient vectors and Hessian matrices for estimating model parameters. The likelihood-like function is also used to compute cross-validation scores for alternative models and to control an adaptive modeling process for identifying possibly nonlinear functional relationships in predictors for probabilities and dispersions. Example analyses are provided of daily pain ratings for a cancer patient over a period of 97 days. Results: The censored Poisson approach is preferable for modeling these data, and presumably other data sets of this kind, because it generates a competitive model with fewer parameters in less time than the other two approaches. The generated probabilities for this model are distinctly nonlinear in time while the dispersions are distinctly nonconstant over time, demonstrating the need for adaptive modeling of such data. The analyses also address the dependence of these daily pain ratings on time and the daily numbers of pain flares. Probabilities and dispersions change differently over time for different numbers of pain flares. Conclusions: Adaptive modeling of daily pain ratings for individual cancer patients is an effective way to identify nonlinear relationships in time as well as in other predictors such as the number of pain flares.
文摘The purpose of this article is to investigate approaches for modeling individual patient count/rate data over time accounting for temporal correlation and non</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">constant dispersions while requiring reasonable amounts of time to search over alternative models for those data. This research addresses formulations for two approaches for extending generalized estimating equations (GEE) modeling. These approaches use a likelihood-like function based on the multivariate normal density. The first approach augments standard GEE equations to include equations for estimation of dispersion parameters. The second approach is based on estimating equations determined by partial derivatives of the likelihood-like function with respect to all model parameters and so extends linear mixed modeling. Three correlation structures are considered including independent, exchangeable, and spatial autoregressive of order 1 correlations. The likelihood-like function is used to formulate a likelihood-like cross-validation (LCV) score for use in evaluating models. Example analyses are presented using these two modeling approaches applied to three data sets of counts/rates over time for individual cancer patients including pain flares per day, as needed pain medications taken per day, and around the clock pain medications taken per day per dose. Means and dispersions are modeled as possibly nonlinear functions of time using adaptive regression modeling methods to search through alternative models compared using LCV scores. The results of these analyses demonstrate that extended linear mixed modeling is preferable for modeling individual patient count/rate data over time</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> because in example analyses</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> it either generates better LCV scores or more parsimonious models and requires substantially less time.
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.
文摘Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.
基金Project (No. BFGEN.100B) supported by the Meat and LivestockLtd., Australia (MLA)
文摘WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from http://agbu. une.edu.au/-kmeyer/wombat.html
基金supported by The 11th Five-year Defense Pre-research Fund of China (Grant No. 51305010387)
文摘The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.
基金supported by National Natural Science Foundation of China (40071049)the National High Technology R&D Program of China (2006AA10z427)the Science and Technology Committee of Chongqing,China(CSTC-2006AC1018)
文摘The mechanisms and efficiencies of the removal and remediation of polycyclic aromatic hydrocarbons (PAHs) in soils by different planting patterns with rape (Brassica campestris) and alfalfa (Medicago sativa) were studied by pot experiments in a greenhouse. Results showed that the remediation efficiencies under mixed cropping of alfalfa and rape significantly exceeded those under single cropping when the initial concentrations of phenanthrene and pyrene were at 20.05-322.06 mg kg^-1 and 20.24-321.42 mg kg^-1, respectively. After 70 days plantation of crops, the contents of extractable PAHs in soils under mixed cropping were much lower than those under single cropping. About 65.17-83.52% of phenanthrene and 60.09%- 75.34% ofpyrene was removed from the soils under mixed cropping, respectively, which were averagely 43.26 and 40.38% for phenanthrene, and 11.03 and 16.29% for pyren higher than those under single cropping. Alfalfa or rape did absorb and accumulate PAHs from the soils apparently; the PAHs concentrations in plants monotonically increased with the increase of initial PAHs concentrations in soil; the accumulations of PAHs in plants showed following sequence as roots 〉 above parts, phenanthrene 〉 pyrene and single cropping 〉 mixed cropping at same contamination level. Despite the presence of vegetation significantly enhanced the remediation of PAHs in soils, contributions of abiotic loss, plant uptake, accumulation and microbial degradation was much lower than those of plant-microbial interactions in the process of phytoremediation. Thus plant-microbial interactions are the main mechanisms for the remediation enhancement of soil PAHs pollution under mixed cropping models. Results suggested a feasibility of the establishment of multi-species phytoremediation for the improvement of remediation efficiencies of PAHs, which may decrease accumulations of PAHs in crops and thus reduce their risks.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
基金financially supported by the"Programa de Mejoramiento del Profesorado"(project:Seguimiento y Evaluacion de Sitios Permanentes de Investigación Forestal y el Impacto Socioeconómico delManejo Forestal en Norte de México)supported by"Programa Banco Santander-USC"(becas para estancias predoctorales destinadas a docentes e investigadores de America Latina)
文摘Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.
基金Supported by National Natural Science Foundation of China(Grant No.51375212)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)China Postdoctoral Science Foundation(Grant No.2014M551518)
文摘The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
基金the European Union for funding of the project "Management of mixed-species stands.Options for a low-risk forest management (REFORM)"(# 2816ERA02S)the Bavarian State Ministry for Nutrition,Agriculture,and Forestry for permanent support of the project W 07" Long-term experimental plots for forest growth and yield research "(# 7831-22209-2013)+1 种基金the German Science Foundation for providing the funds for the projects PR 292/12-1" Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech"the National Institute of Food and Agriculture/Pennsylvania Agriculture Experiment Station project PEN 04516 for its support
文摘A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.