Ce_(1–x)La_xO_y solid solution was simply prepared using mixed rare earth chloride(RECl_3·x H_2O, RE=Ce, La99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultras...Ce_(1–x)La_xO_y solid solution was simply prepared using mixed rare earth chloride(RECl_3·x H_2O, RE=Ce, La99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with different ultrasonic frequencies(CLf, f=200, 400, 600, 800, 1000 Hz). A compared Ce_(1–x)La_xO_y solid solution(CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the factors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultrasonic frequency for Ce_(1–x)La_xO_y solid solution preparation. When soot and catalyst were tight contacted, the peak temperature(Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, the Tpeak had obvious negative correlation with H_2 consumption. It was inferred that good reducibility of the Ce_(1–x)La_xO_y solid solution favored the soot oxidation reaction. The Ce_(1–x)La_xO_y solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.展开更多
基金Project supported by National Natural Science Foundation of China(21403015)the Program of the General Research Institute for Nonferrous Metals(53515)
文摘Ce_(1–x)La_xO_y solid solution was simply prepared using mixed rare earth chloride(RECl_3·x H_2O, RE=Ce, La99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with different ultrasonic frequencies(CLf, f=200, 400, 600, 800, 1000 Hz). A compared Ce_(1–x)La_xO_y solid solution(CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the factors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultrasonic frequency for Ce_(1–x)La_xO_y solid solution preparation. When soot and catalyst were tight contacted, the peak temperature(Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, the Tpeak had obvious negative correlation with H_2 consumption. It was inferred that good reducibility of the Ce_(1–x)La_xO_y solid solution favored the soot oxidation reaction. The Ce_(1–x)La_xO_y solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.