A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t...This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncerta...This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared to the existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.展开更多
The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinit...The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems.展开更多
This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncerta...This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.展开更多
The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant ...The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.展开更多
In this paper, a systematic robust control design and analysis for a single axis precise positioner is presented. The effects of uncertainties on closed-loop stability and performance are considered in the H∞ robust ...In this paper, a systematic robust control design and analysis for a single axis precise positioner is presented. The effects of uncertainties on closed-loop stability and performance are considered in the H∞ robust controllers design. v-gap metric is utilized to validate the intelligently estimated uncertainty. The robust controllers are formulated within the frame- work of the standard H∞ mixed sensitivity optimization problem. Furthermore, a specially designed integral-H∞ and two-degree-of-freedom 2 DOF H∞ controllers are developed to provide improved robust performance and resolution properties. It is shown that the proposed design schemes are very effective for robust control and precise tracking performance of the servo positioning system.展开更多
A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation con...A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.展开更多
针对具有外界扰动的线性定常(Linear time invariant,LTI)系统,本文研究了其鲁棒预测控制器(Robust model predictive control,RMPC)的设计方法.设计采用了混合的H2/H∞控制方法以有效地兼顾系统的抗干扰能力和闭环控制性能.同时,为了...针对具有外界扰动的线性定常(Linear time invariant,LTI)系统,本文研究了其鲁棒预测控制器(Robust model predictive control,RMPC)的设计方法.设计采用了混合的H2/H∞控制方法以有效地兼顾系统的抗干扰能力和闭环控制性能.同时,为了降低设计的保守性,设计利用闭环多步控制策略以扩大控制器的可行范围,改善系统控制性能.进而,为了便于实际实施,提出该RMPC的简化设计,通过将大部分在线计算量离线完成以降低鲁棒预测控制器的在线计算量.展开更多
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
文摘This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linear matrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared to the existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parameters is not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2 control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been known for uncertain systems. The design approach is demonstrated through a simple example.
基金This work is supported by the National Natural Science Foundation of China (No.60374002 and No.60421002) the 973 program of China (No.2002CB312200) and the program for New Century Excellent Talents in University (No.NCET-04-0547).
文摘The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.
基金supported by the National Natural Science Foundation of China (No.60774044)the Professional Research Foundation for Advanced Talents of Jiangsu University (No.07JDG037)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.08KJ510010)the Open Project of National Key Laboratory of Industrial Control Technology of Zhejiang University (No.ICT0910)Qing Lan Project of Jiangsu Province
文摘The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.
文摘In this paper, a systematic robust control design and analysis for a single axis precise positioner is presented. The effects of uncertainties on closed-loop stability and performance are considered in the H∞ robust controllers design. v-gap metric is utilized to validate the intelligently estimated uncertainty. The robust controllers are formulated within the frame- work of the standard H∞ mixed sensitivity optimization problem. Furthermore, a specially designed integral-H∞ and two-degree-of-freedom 2 DOF H∞ controllers are developed to provide improved robust performance and resolution properties. It is shown that the proposed design schemes are very effective for robust control and precise tracking performance of the servo positioning system.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2002AA745120)the National Defense Pre-research Foundation(9140A09020706JW314)the National Natural Science Foundationof China(160402003).
文摘A novel soft initiai-rotation control system and an H∞ robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10^-3 rad/s order.
文摘针对具有外界扰动的线性定常(Linear time invariant,LTI)系统,本文研究了其鲁棒预测控制器(Robust model predictive control,RMPC)的设计方法.设计采用了混合的H2/H∞控制方法以有效地兼顾系统的抗干扰能力和闭环控制性能.同时,为了降低设计的保守性,设计利用闭环多步控制策略以扩大控制器的可行范围,改善系统控制性能.进而,为了便于实际实施,提出该RMPC的简化设计,通过将大部分在线计算量离线完成以降低鲁棒预测控制器的在线计算量.